Skip to main content

Advertisement

Log in

Microbiota–Gut–Brain Axis: Yeast Species Isolated from Stool Samples of Children with Suspected or Diagnosed Autism Spectrum Disorders and In Vitro Susceptibility Against Nystatin and Fluconazole

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a general term for a group of complex neurodevelopmental disorders of brain development that limits a person’s ability to function normally. Etiology has not been clearly defined up to date. However, gut microbiota and the bidirectional communication between the gastrointestinal tract and brain, the so-called microbiota–gut–brain axis, are hypothesized, which may be involved in the etiology of several mental disorders. Recent reports suggest that Candida, particularly Candida albicans, growth in intestines may cause lower absorption of carbohydrates and minerals and higher toxin levels which are thought to contribute autistic behaviors. The aim of this study was to identify the 3-year deposited yeasts isolated from stool samples of children with diagnosed or suspected ASD and to determine in vitro activity of nystatin and fluconazole against these isolates using Clinical Laboratory Standards Institute M27-A3 guidelines. A 17-year retrospective assessment was also done using our laboratory records. Among the species identified, intrinsically fluconazole-resistent Candida krusei (19.8 %) and Candida glabrata (14.8 %) with elevated MICs were remarkable. Overall, C. albicans (57.4 %) was the most commonly isolated species in 17 years. The species identification and/or antifungal susceptibility tests have to be performed using the strain isolated from stool sample, to select the appropriate antifungal agent, if antimycotic therapy is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autism fact sheet. National Institute of neurological disorders and stroke. 2014. http://www.ninds.nih.gov/disorders/autism/detail_autism.htm.

  2. Watts TJ. The pathogenesis of autism. Clin Med Pathol. 2008;1(99):103.

    Google Scholar 

  3. Tomova A, Husarova V, Lakatosova S, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav. 2015;138:179–87.

    Article  CAS  PubMed  Google Scholar 

  4. Caronna EB, Milunsky JM, Tager-Flusberg H. Autism spectrum disorders: clinical and research frontiers. Arch Dis Child. 2008;93(6):518–23.

    Article  CAS  PubMed  Google Scholar 

  5. Allely CS, Gilberg C, Wilson P. Neurobiological abnormalities in the first few years of life in individuals later diagnosed with autism spectrum disorder: a review of recent data. Behav Neurol. 2014;2014:210780.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Montiel-Castro AJ, Gonzales-Cervantes RM, Bravo-Ruiseco G, Pacheco-Lopez G. The microbiota–gut–brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci. 2013;7:1–16.

    Article  Google Scholar 

  7. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms and therapeutic potential. Adv Exp Med Biol. 2014;817:373–403.

    Article  CAS  PubMed  Google Scholar 

  8. Foster JA, McVey Neufeld KA. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.

    Article  CAS  PubMed  Google Scholar 

  9. Cryan JE, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci. 2012;13(10):701–12.

    Article  CAS  PubMed  Google Scholar 

  10. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22–34.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Norris S. Potential causes of autism spectrum disorders. Rep Can Libr Parlim. 2006:4–5.

  12. Reichelt KL, Knivsberg AM. The possibility and probability of a gut-to-brain connection in autism. Ann Clin Psychiatry. 2009;21(4):205–2011.

    CAS  PubMed  Google Scholar 

  13. Burrus CJ. A biochemical rationale for the interaction between gastrointestinal yeast and autism. Med Hypothesis. 2012;79(6):784–5.

    Article  CAS  Google Scholar 

  14. Hazen KC, Howell SA. Candida, Cryptococcus and other yeasts of medical importance. In: Murray R, Baron EJ, Jorgensen JH, Phaller MA, Yolken RH, editors. Manual of clinical microbiology, vol. 9., ASM PressDC: Washington; 2007. p. 1762–88.

    Google Scholar 

  15. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, in 3rd Informal Supplement M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  16. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth International Supplement, M27-A3, Wayne, PA: Clinical and Laboratory Standards Institute, 2012: 32.

  17. Ellepola ANB, Samaranayake LP. Adhesion of oral C. albicans to human buccal epithelial cells following limited exposure to antifungal agents. J Oral Pathol Med. 1998;27(7):325–32.

    Article  CAS  PubMed  Google Scholar 

  18. Ellepola ANB, Samaranayake LP. The in vitro post-antifungal effect of nystatin on Candida species of oral origin. J Oral Pathol Med. 1999;28(3):112–6.

    Article  CAS  PubMed  Google Scholar 

  19. Arikan S, Ostrosky-Zeichner L, Lozano-Chiu M, et al. In vitro activity of nystatin compared with those of liposomal nystatin, amphotericin B, and fluconazole against clinical Candida isolates. J Clin Microbiol. 2002;40(4):1406–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ellepola ANB, JosepH BK, Chandy R, Khan ZU. The postantifungal effect of nystatin and its impact on adhesion attributes of oral Candida dubliniensis isolates. Mycoses. 2014;57(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  21. Ellepola ANB, Samaranayake LP. Impact of brief and sequential exposure to nystatin on the germ tube formation and cell surface hydrophobicity of oral Candida albicans isolates from human immunodeficiency virus-infected patients. Med Princ Pract. 2014;23(4):307–12.

    Article  PubMed  Google Scholar 

  22. Farmer AD, Randall HA, Aziz Q. It’s a gut feeling: how the gut microbiota affects the state of mind. J Physiol. 2014;592(Pt 14):2981–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9.

    PubMed Central  PubMed  Google Scholar 

  24. Van de Sande MMH, van Buul VJ, Bruns FJPH. Autism and nutrition: the role of the gut–brain axis. Nutr Res Rev. 2014;27(2):199–214.

    Article  Google Scholar 

  25. Mayer EA, Padua D, Tillisch K. Altered brain–gut axis in autism: comorbidity or causative mechanisms ? BioEssays. 2014;36(10):933–9.

    Article  PubMed  Google Scholar 

  26. Soyucen E, Gulcan A, Aktuglu-Zeybek AÇ, Onal H, Kiykim E, Aydin A. Differences in gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int. 2014;56(3):336–43.

    Article  PubMed  Google Scholar 

  27. Gosiewski T, Salamon D, Spoza M, Sroka A, Malecki MT, Bulanda M. Quantitative evaluation of fungi of the genus Candida in the feces of adult patients, with type 1 and 2 diabetes—a pilot study. Gut Pathog. 2014;6(1):43–7.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE. 2013;8(6):e66019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ekiel A, Aptekorz M, Kazek B, Wiechula B, Wilk I, Martirosian G. Intestinal microflora of autistic children. Med Dosw Mikrobiol. 2010;62(3):237–43.

    PubMed  Google Scholar 

  30. Rozkiewich D, Daniluk T, Sciepuk M, Kurzqkowska B, Oldak E, Zaremba ML. Prevalence of Candida albicans in stool of hospitalized children in 2003 with or without diarrhea from the Bialystok region. Prz Epidemiol. 2005;59(1):43–51.

    Google Scholar 

  31. Agirbasli H, Keceli SAO, Gedikoglu G. Fecal fungal flora of pediatric healthy volunteers and immunosuppressed patients. Mycopathologia. 2005;159:515–20.

    Article  CAS  PubMed  Google Scholar 

  32. Klingspor L, Stitzing G, Johansen K, Murtaza A, Holmberg K. Infantile diarrhoea and malnutrition associated with Candida in a developing community. Mycoses. 1993;36(1–2):19–24.

    CAS  PubMed  Google Scholar 

  33. Khatip R, Riederer KM, Ramanathan J, Baran J Jr. Faecal fungal flora in healthy volunteers and inpatients. Mycoses. 2001;44(1):151–6.

    Article  Google Scholar 

  34. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE. 2013;8(10):e76993. doi:10.1371/journal.pone.0076993.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Colombo AL, Padovan ACB, Chaves GM. Current knowledge of Trichosporon spp. and Trichosporonosis. Clin Microbiol Rev. 2011;24(4):682–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kreger-Van Rij NJW, editor. The yeasts: a taxonomic study. 3rd ed. Amsterdam: Elsevier Science Publishers B.V; 1984.

    Google Scholar 

  37. Sanata B, Salam OA, Ibrahim S, et al. Digestive fungal flora in asymptomatic subjects in Bobo-Dioulasso, Burkina Faso. Asian Pac J Trop Biomed. 2014;4(8):658–62.

    Article  Google Scholar 

  38. Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiological cutoff values to characterize resistance in the SENTRY antimicrobial surveillance programme (2009). Diagn Microbiol Infect Dis. 2011;69(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  39. Carrillo-Munoz AJ, Quindos G, Tur C, et al. In vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B desoxycholate, fluconazole and itraconazole. J Antimicrob Chemother. 1999;44(3):397–401.

    Article  CAS  PubMed  Google Scholar 

  40. Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol. 2005;43(5):2155–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Choukri F, Benderdouche M, Sednaoui P. In vitro susceptibility profile of 200 recent isolates of Candida spp. to topical antifungal treatments of vulvovaginal candidiasis, the imidazoles and nystatin agents. J Mycol Med. 2014;24(4):303–7.

    Article  CAS  PubMed  Google Scholar 

  42. Bennett JF, Izumikawa K, Marr KA. Mechanisms of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother. 2004;48(5):1773–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Serda Kantarcioglu.

Ethics declarations

Ethical considerations

The study protocol was approved by Istanbul University Cerrahpasa Medical Faculty Ethics Committee (date: 02.10.2014; No. 41302).

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantarcioglu, A.S., Kiraz, N. & Aydin, A. Microbiota–Gut–Brain Axis: Yeast Species Isolated from Stool Samples of Children with Suspected or Diagnosed Autism Spectrum Disorders and In Vitro Susceptibility Against Nystatin and Fluconazole. Mycopathologia 181, 1–7 (2016). https://doi.org/10.1007/s11046-015-9949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-015-9949-3

Keywords

Navigation