Skip to main content
Log in

Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are cell-to-cell shuttles that have recently drawn interest both as drug delivery platforms and disease biomarkers. Despite the increasingly recognized relevance of these vesicles, their detection, and characterization still have several technical drawbacks. In this paper, we accurately assess the size distribution and concentration of EVs by using a high-throughput non-perturbative technique such as Dynamic Light Scattering (DLS). The vesicle radii distribution, as further confirmed by Atomic Force Microscopy experiments, ranges from 10 to 80 nm and appears very asymmetric towards larger radii with a main peak at roughly 30 nm. By combining DLS and Bradford assay, we also demonstrate the feasibility of recovering the concentration and its distribution of proteins contained inside vesicles. The sensitivity of our approach allows to detect protein concentrations as low as 0.01 mg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreasi Bassi F, Arcovito G, De Spirito M, Mordente A, Martorana GE (1995) Self-similarity properties of alpha-crystallin supramolecular aggregates. Biophys J 69(6):2720–2727

    Article  Google Scholar 

  • Becker W (1991) Deamer D. Benjamin/Cummings Publishing Company, The World of the Cell Redwood City CA

    Google Scholar 

  • Berne B, Pecora R (2000) Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Dover Publications, Mineola, NY

    Google Scholar 

  • De Spirito M, Arcovito G, Papi M, Rocco M, Ferri F (2003) Small- and wide-angle elastic light scattering study of fibrin structure. J Appl Crystallogr 36:636–641

    Article  Google Scholar 

  • De Spirito M, Brunelli R, Mei G, Bertani F, Ciasca G, Greco G, Papi M, Arcovito G, Ursini F, Parasassi T (2006) Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites. Biophys J 90(11):4239–4247

    Article  Google Scholar 

  • El Andaloussi S, Lakhal S, Mäger I, Wood M (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65(3):391–397

    Article  Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of Nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharmaceut Res 27(5):796–810

    Article  Google Scholar 

  • Goure J (2013) Optics in Instruments: Applications in Biology and Medicine. Wiley, Incorporated

    Book  Google Scholar 

  • György B, Szabó T, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688

    Article  Google Scholar 

  • Hallett R, Craig T, Marsh J, Nickel B (1989) Particle size analysis: number distributions by dynamic light scattering. Can J Spectrosc 34(3):63–70

    Google Scholar 

  • Hong B, Cho J, Kim H, Choi E, Rho S, Kim J, Kim JH, Choi D-S, Kim Y-K, Hwang D, Gho YS (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10(1):556. doi:10.1186/1471-2164-10-556

    Article  Google Scholar 

  • Lässer C, Eldh M, Lötvall J (2012) Isolation and characterization of RNA-containing exosomes. J Vis Exp 9(59):e3037

    Google Scholar 

  • Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ, Harrison P (2009) Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang 96(3):206–212

    Article  Google Scholar 

  • Lodish H, Berk A, Zipursky S (2000) Molecular cell biology, 4th edn. W.H. Freeman, New York

    Google Scholar 

  • Maulucci G, De Spirito M, Arcovito G, Boffi F, Castellano A, Briganti G (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88(5):3545–3550

    Article  Google Scholar 

  • Momen-Heravi F, Balaj L, Alian S, Tigges J, Toxavidis V, Ericsson M, Distel RJ, Ivanov AR, Skog J, Kuo WP (2012) Alternative methods for characterization of extracellular vesicles. Front Physiol 3:354. doi:10.3389/fphys.2012.00354

    Google Scholar 

  • Müller G (2012) Novel tools for the study of cell type-specific exosomes and microvesicles. J Bioanal Biomed 4(4):046–060

    Google Scholar 

  • Nishino T, Ikemoto E, Kogure K (2004) Application of atomic force microscopy to observation of marine bacteria. J Oceanogr 60(2):219–225

    Article  Google Scholar 

  • Nolte-’t Hoen E, van der Vlist E, Aalberts M, Mertens H, Bosch B, Bartelink W, Mastrobattista E, van Gaal EV, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8(12):712–720

    Article  Google Scholar 

  • Papi M, Arcovito G, De Spirito M, Amiconi G, Bellelli A, Boumis G (2005) Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration. Appl Phys Lett 86(18):183901

    Article  Google Scholar 

  • Papi M, Arcovito G, De Spirito M, Vassalli M, Tiribilli B (2006) Fluid viscosity determination by means of uncalibrated atomic force microscopy cantilevers. Appl Phys Lett 88(19):194102

    Article  Google Scholar 

  • Papi M, Maulucci G, Arcovito G, Paoletti P, Vassalli M, De Spirito M (2008) Detection of microviscosity by using uncalibrated atomic force microscopy cantilevers. Appl Phys Lett 93(12):124102

    Article  Google Scholar 

  • Papi M, Maulucci G, De Spirito M, Missori M, Arcovito G, Lancellotti S, Di Stasio E, De Cristofaro R, Arcovito A (2010) Ristocetin-induced self-aggregation of von Willebrand factor. Eur Biophys J 39(12):1597–1603

    Article  Google Scholar 

  • Parasassi T, De Spirito M, Mei G, Brunelli R, Greco G, Lenzi L, Maulucci G, Nicolai E, Papi M, Arcovito G, Tosatto SC, Ursini F (2008) Low density lipoprotein misfolding and amyloidogenesis. FASEB J 22(7):2350–2356

    Article  Google Scholar 

  • Pencer J, White G, Hallett F (2001) Osmotically induced shape changes of large unilamellar vesicles measured by dynamic light scattering. Biophys J 81(5):2716–2728

    Article  Google Scholar 

  • Powis S, Soo C, Zheng Y, Campbell E, Riches A (2011) Nanoparticle tracking analysis of cell exosome and nanovesicle secretion. Microsc Anal 25(6):7–9

    Google Scholar 

  • Provencher S (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  • Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak M (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  Google Scholar 

  • Sgambato A, Puglisi M, Errico F, Rafanelli F, Boninsegna A, Rettino A, Genovese G, Coco C, Gasbarrini A, Cittadini A (2010) Post-translational modulation of CD133 expression during sodium butyrate-induced differentiation of HT29 human colon cancer cells: implications for its detection. J Cell Physiol 224(1):241–243

    Google Scholar 

  • Shankaran H, Alexandridis P, Neelamegham S (2003) Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 101(7):2637–2645

    Article  Google Scholar 

  • Sharma S, Rasool H, Palanisamy V, Mathisen C, Schmidt M, Wong D, Gimzewski JK (2010) Structural- mechanical characterization of nanoparticles-exosomes in human saliva, using correlative AFM FESEM and force spectroscopy. ACS Nano 4(4):1921–1926

    Article  Google Scholar 

  • van der Pol E, Hoekstra A, Sturk A, Otto C, van Leeuwen T, Nieuwland R (2012) Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 8(12):2596–2607

    Google Scholar 

  • Varga Z, Yuana Y, Grootemaat AE, van der Pol E, Gollwitzer C, Krumrey M, Nieuwland R (2014) Towards traceable size determination of extracellular vesicles. J Extracell Vesicles. doi:10.3402/jev.v3.23298

    Google Scholar 

  • Yang C, Robbins P (2011) The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol. doi:10.1155/2011/842849

    Google Scholar 

Download references

Acknowledgments

This research has been supported by Università Cattolica del Sacro Cuore of Rome. Measurements were performed at the Laboratorio Centralizzato di Microscopia ottica ed elettronica facility (LABCEMI) of Università Cattolica del S. Cuore (Rome, Italy). We are extremely thankful to Mario Amici for the technical support in experiments.

The authors declare no commercial or financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco De Spirito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmieri, V., Lucchetti, D., Gatto, I. et al. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. J Nanopart Res 16, 2583 (2014). https://doi.org/10.1007/s11051-014-2583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2583-z

Keywords

Navigation