Skip to main content

Advertisement

Log in

Antioxidant Effects of SelegilIne in Oxidative Stress Induced by Iron Neonatal Treatment in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Increased levels of iron in specific brain regions have been reported in neurodegenerative disorders. It has been postulated that iron exerts its deleterious effects on the nervous system by inducing oxidative damage. In a previous study, we have shown that iron administered during a particular period of the neonatal life induces oxidative damage in brain regions in adult rats. The aim of the present study was to evaluate the possible protective effect of selegiline, a monoamino-oxidase B (MAO-B) inhibitor used in pharmacotherapy of Parkinson’s disease, against iron-induced oxidative stress in the brain. Results have shown that selegiline (1.0 and 10.0 mg/kg), when administered early in life was able to protect the substantia nigra as well as the hippocampus against iron-induced oxidative stress, without affecting striatum. When selegiline (10.0 mg/kg) was administered in the adult life to iron-treated rats, oxidative stress was reduced only in the substantia nigra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23(5):795–807

    Article  PubMed  CAS  Google Scholar 

  2. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  3. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85

    PubMed  CAS  Google Scholar 

  4. Petrat F, de Groot H, Sustmann R et al (2002) The chelatable iron pool in living cells: a methodically defined quantity. Biol Chem 383:489–502

    Article  PubMed  CAS  Google Scholar 

  5. Ryan TP, Aust SD (1992) The role of iron in oxygen-mediated toxicities. Crit Rev Toxicol 22:119–141

    PubMed  CAS  Google Scholar 

  6. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  7. Milman N, Pedersen P, Steig T et al (2001) Clinically overt hereditary hemochromatosis in Denmark 1948/1985: epidemiology, factors of significance for long-term survival, and causes of death in 179 patients. Ann Hematol 80:737–744

    Article  PubMed  CAS  Google Scholar 

  8. Rasmussen M, Folsom AR, Catellier DJ et al (2001) A prospective study of coronary heart disease and the hemochromatosis gene (HFE) C282Y mutation: the atherosclerosis risk in communities (ARIC) study. Atherosclerosis 154:739–746

    Article  PubMed  CAS  Google Scholar 

  9. Rauen U, Petrat F, Sustmann R et al (2004) Iron-induced mitochondrial permeability transition in cultured hepatocytes. J Hepatol 40(4):607–615

    Article  PubMed  CAS  Google Scholar 

  10. Yang Q, McDonnell SM, Khoury MJ et al (1998) Hemochromatosis-associated mortality in the United States from 1979 to 1992: an analysis of Multiple-Cause Mortality Data. Ann Intern Med 129: 946–953

    PubMed  CAS  Google Scholar 

  11. Beckman LE, Van Landeghem GF, Sikstrom C et al (1999) Interaction between hemochromatosis and transferrin receptor genes in different neoplastic disorders. Carcinogenesis 20: 1231–1233

    Article  PubMed  CAS  Google Scholar 

  12. Li J, Zhu Y, Singal DP (2000) HFE gene mutations in patients with rheumatoid arthritis. J Rheumatol 27:2074–2077

    PubMed  CAS  Google Scholar 

  13. Walker EMJ, Walker SM (2000) Effects of iron overload on the immune system. Ann Clin Lab Sci 30:354–365

    PubMed  CAS  Google Scholar 

  14. Berg D, Gerlach M, Youdim MBH et al (2001) Brain iron pathways and their relevance to Parkinson´s disease. J Neurochem 79:225–236

    Article  PubMed  CAS  Google Scholar 

  15. Sayre LM, Perry G, Atwood CS (2000) The role of metals in neurodegenerative diseases. Cell Mol Biol 46:731–741

    PubMed  CAS  Google Scholar 

  16. Floyd RA, Carney JM (1992). Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32(Suppl):S22–S27

    Article  PubMed  CAS  Google Scholar 

  17. Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11(3):595–603

    Article  PubMed  CAS  Google Scholar 

  18. Kim NH, Park SJ, Jin JK et al (2000) Increased ferric iron content and iron-induced oxidative stress in the brains of scrapie-infected mice. Brain Res 884(1–2):98–103

    Google Scholar 

  19. Dexter DT, Carayon A, Javoy-Agid F et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975

    Article  PubMed  Google Scholar 

  20. Dexter DT, Wells FR, Lees AJ et al (1994) Increased nigral iron content and alteration in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  Google Scholar 

  21. Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14(2):115–140

    Article  PubMed  CAS  Google Scholar 

  22. Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke? Acta Neurol Scand Suppl 126:23–33

    PubMed  CAS  Google Scholar 

  23. Lee DW, Sohn HO, Lim HB et al (1999) Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic Res 30(6):499–507

    Article  PubMed  CAS  Google Scholar 

  24. Liu R, Liu IY, Bi X et al (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics Proc. Natl Acad Sci USA 100(14):8526–8531

    Article  CAS  Google Scholar 

  25. Fernandez-Espejo E (2004) Pathogenesis of Parkinson’s disease: prospects of neuroprotective and restorative therapies. Mol Neurobiol 29(1):15–30

    Article  PubMed  CAS  Google Scholar 

  26. Kiray M, Bagriyanik HA, Pekcetin C et al (2006) Deprenyl and the relationship between its effects on spatial memory, oxidant stress and hippocampal neurons in aged male rats. Physiol Res 55(2):205–212

    PubMed  CAS  Google Scholar 

  27. Magyar K, Szende B (2004) (-)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotox 25(1–2):233–242

    Article  CAS  Google Scholar 

  28. Magyar K, Szende B, Lengyel J et al (1996) The pharmacology of B-type selective monoamine oxidase inhibitors; milestones in (-)-deprenyl research. J Neural Transm Suppl 48:29–43

    PubMed  CAS  Google Scholar 

  29. Olanow CW (1996) Deprenyl in the treatment of Parkinson’s disease: clinical effects and speculations on mechanism of action. J Neural Transm Suppl 48:75–84

    PubMed  CAS  Google Scholar 

  30. Heinonen EH, Lammintausta R.A (1991) Review of the pharmacology of selegiline. Acta Neurol Scand Suppl 136:44–59

    Article  PubMed  CAS  Google Scholar 

  31. De Lima MN, Polydoro M, Laranja DC et al (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci 21(9):2521–2528

    Article  PubMed  Google Scholar 

  32. Schröder N, Fredriksson A, Vianna MRM et al (2001) Memory deficits in adult rats following postnatal iron administration. Behav Brain Res 124:77–85

    Article  PubMed  Google Scholar 

  33. Brandeis R, Sapir M, Kapon Y et al (1991) Improvement of cognitive function by MAO-B inhibitor L-deprenyl in aged rats. Pharmacol Biochem Behav 39(2):297–304

    Article  PubMed  CAS  Google Scholar 

  34. De Lima MN, Laranja DC, Caldana F et al (2005) Selegiline protects against recognition memory impairment induced by neonatal iron treatment. Exp Neurol 196(1):177–183

    Article  PubMed  CAS  Google Scholar 

  35. Head E, Hartley J, Kameka AM et al (1996) The effects of l-deprenyl on spatial short term memory in young and aged dogs. Prog Neuropsychopharmacol Biol Psychiatry 20:515–530

    Article  PubMed  CAS  Google Scholar 

  36. Kiray M, Uysal N, Sonmez A et al (2004) Positive effects of deprenyl and estradiol on spatial memory and oxidant stress in aged female rat brains. Neurosci Lett 354(3):225–228

    Article  PubMed  CAS  Google Scholar 

  37. Kiray M, Bagriyanik HA, Pekcetin C et al (2006) Deprenyl and the relationship between its effects on spatial memory, oxidant stress and hippocampal neurons in aged male rats. Physiol Res 55(2):205–212

    PubMed  CAS  Google Scholar 

  38. Maia FD, Pitombeira BS, Araujo DT et al (2004) l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Neurobiol 24:87–100

    Article  PubMed  CAS  Google Scholar 

  39. Stoll S, Hafner U, Pohl O et al (1994) Age-related memory decline and longevity under treatment with selegiline. Life Sci 55:2155–2163

    Article  PubMed  CAS  Google Scholar 

  40. Yavich L, Sirvio J, Heinonen E et al (1993) The interaction of L-deprenyl and scopolamine on spatial learning/memory in rats. J Neural Transm Park Dis Dement Sect 6(3):189–97

    Article  PubMed  CAS  Google Scholar 

  41. Esterbauer H, Cheeseman KH et al (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Meth Enzymol 186:407–421

    Article  PubMed  CAS  Google Scholar 

  42. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  43. Dal-Pizzol F, Klamt F, Frota ML Jr et al (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Brain Res Dev Brain Res 130(1):109–114

    Article  PubMed  CAS  Google Scholar 

  44. Connor JR, Pavlick G, Karli D et al (1995) A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 355:111–123

    Article  PubMed  CAS  Google Scholar 

  45. Taylor EM, Morgan EH (1990) Developmental changes in transferrin and iron uptake by the brain in the rat. Brain Res Dev Brain Res 55:35–42

    Article  PubMed  CAS  Google Scholar 

  46. Dwork AJ, Lawler G, Zybert PA et al (1990) An autoradiographic study of the uptake and distribution of iron by the brain of the young rat. Brain Res 518:31–39

    Article  PubMed  CAS  Google Scholar 

  47. Fredriksson A, Schroder N, Eriksson P et al (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 159(1):25–30

    Article  PubMed  CAS  Google Scholar 

  48. Youdim MB, Fridkin M, Zheng H (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126(2):317–326

    Article  PubMed  CAS  Google Scholar 

  49. Riederer P, Sofic E, Rausch WD et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  50. Roskams AJ, Connor JR (1994) Iron, transferrin, and ferritin in the rat brain during development and aging. J Neurochem 63:709–716

    Article  PubMed  CAS  Google Scholar 

  51. Polla AS, Polla LL, Polla BS (2003) Iron as the malignant spirit in successful ageing. Ageing Res Rev 2: 25–37

    Article  PubMed  CAS  Google Scholar 

  52. Gerlach M, Foley P, Riederer P (2003) The relevance of preclinical studies for the treatment of Parkinson’s disease. J Neurol 250(Suppl): I/31–I/34

    Google Scholar 

  53. Henchcliffe C, Schumacher HC, Burgut FT (2005) Recent advances in Parkinson’s disease therapy: use of monoamine oxidase inhibitors. Expert Rev Neurother 5(6):811–821

    Article  PubMed  CAS  Google Scholar 

  54. Pallhagen S, Heinonen E, Hägglund J et al (2006) Selegiline slows the progression of the symptoms of Parkinson disease. Neurology 66(8):1200–1206

    Article  Google Scholar 

  55. Ebadi M, Sharma S, Shavali S et al (2002) Neuroprotective actions of selegiline.J. Neurosci Res 67(3):285–9

    Article  CAS  Google Scholar 

  56. Cohen G, Pasik P, Cohen B et al (1984) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106:209–210

    Article  PubMed  CAS  Google Scholar 

  57. Matsubara K, Senda T, Uezono T et al (2001) L-deprenyl prevents the cell hypoxia induced by dopaminergic neurotoxins, MPP+, and β-carbolinium: a microdialysis study in rats. Neurosci Lett 302:65–68

    Article  PubMed  CAS  Google Scholar 

  58. Spooren WP, Waldmeier P, Gentsch C (1999) The effect of a subchronic post-lesion treatment with (-)-deprenyl on the sensitivity of 6-OHDA-lesioned rats to apomorphine and d-amphetamine. J Neural Transm 106:825–833

    Article  PubMed  CAS  Google Scholar 

  59. Carrillo MC, Kanai S, Nokubo M et al (1992) (-)Deprenyl increases activities of superoxide dismutase and catalase in striatum but not in hippocampus: the sex and age-related differences in the optimal dose in the rat. Exp Neurol 116(3):286–294

    Article  PubMed  CAS  Google Scholar 

  60. Kitani K, Minami C, Isobe K et al (2002) Why (–)deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Ageing Dev 123(8):1087–1100

    Article  PubMed  CAS  Google Scholar 

  61. Youdim MB, Fridkin M, Zheng H. (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126(2):317–26

    Article  PubMed  CAS  Google Scholar 

  62. Long DA, Ghosh K, Moore AN et al (1996) Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res 717(1–2):109–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by CNPq-MCT-Brazil (grant 307265/2003-0 to N.S.), PRONEX, UNESC and FUNCITEC (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Schroder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budni, P., de Lima, M.N.M., Polydoro, M. et al. Antioxidant Effects of SelegilIne in Oxidative Stress Induced by Iron Neonatal Treatment in Rats. Neurochem Res 32, 965–972 (2007). https://doi.org/10.1007/s11064-006-9249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9249-x

Keywords

Navigation