Skip to main content

Advertisement

Log in

Approaches to Prevent Dopamine Quinone-Induced Neurotoxicity

  • Review Article
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dopamine (DA) and its metabolites containing two hydroxyl residues exert cytotoxicity in dopaminergic neuronal cells, primarily due to the generation of highly reactive DA and DOPA quinones. Quinone formation is closely linked to other representative hypotheses such as mitochondrial dysfunction, inflammation, oxidative stress, and dysfunction of the ubiquitin-proteasome system, in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease and methamphetamine-induced neurotoxicity. Therefore, pathogenic effects of the DA quinone have focused on dopaminergic neuron-specific oxidative stress. Recently, various studies have demonstrated that some intrinsic molecules and several drugs exert protective effects against DA quinone-induced damage of dopaminergic neurons. In this article, we review recent studies on some neuroprotective approaches against DA quinone-induced dysfunction and/or degeneration of dopaminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine- or l-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5:165–176

    Article  PubMed  Google Scholar 

  2. Asanuma M, Miyazaki I, Diaz-Corrales FJ, Ogawa N (2004) Quinone formation as dopaminergic neuron-specific oxidative stress in pathogenesis of sporadic Parkinson’s disease and neurotoxin-induced parkinsonism. Acta Med Okayama 58:221–233

    PubMed  CAS  Google Scholar 

  3. Choi HJ, Kim SW, Lee SY, Hwang O (2003) Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson’s disease. J Neurochem 86:143–152. doi:10.1046/j.1471-4159.2003.01808.x

    Article  PubMed  CAS  Google Scholar 

  4. Choi HJ, Lee SY, Cho Y, Hwang O (2005) Inhibition of vesicular monoamine transporter enhances vulnerability of dopaminergic cells: relevance to Parkinson’s disease. Neurochem Int 46:329–335. doi:10.1016/j.neuint.2004.10.009

    Article  PubMed  CAS  Google Scholar 

  5. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214–1221. doi:10.1038/nm1314

    Article  PubMed  CAS  Google Scholar 

  6. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643

    PubMed  CAS  Google Scholar 

  7. Tse DC, McCreery RL, Adams RN (1976) Potential oxidative pathways of brain catecholamines. J Med Chem 19:37–40. doi:10.1021/jm00223a008

    Article  PubMed  CAS  Google Scholar 

  8. Miyazaki I, Asanuma M, Diaz-Corrales FJ, Miyoshi K, Ogawa N (2005) Dopamine agonist pergolide prevents levodopa-induced quinoprotein formation in parkinsonian striatum and shows quenching effects on dopamine-semiquinone generated in vitro. Clin Neuropharmacol 28:155–160. doi:10.1097/01.wnf.0000175523.33334.24

    Article  PubMed  CAS  Google Scholar 

  9. Miyazaki I, Asanuma M, Diaz-Corrales FJ, Fukuda M, Kitaichi K, Miyoshi K et al (2006) Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone formation-related molecules. FASEB J 20:571–573

    PubMed  CAS  Google Scholar 

  10. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137. doi:10.1046/j.1471-4159.1999.0731127.x

    Article  PubMed  CAS  Google Scholar 

  11. Kuhn DM, Francescutti-Verbeem DM, Thomas DM (2006) Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann NY Acad Sci 1074:31–41. doi:10.1196/annals.1369.003

    Article  PubMed  CAS  Google Scholar 

  12. Li H, Dryhurst G (1997) Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3, 4-dihydro-5-hydroxy-2H-1, 4-benzothiazine-3-carboxylic acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson’s disease. J Neurochem 69:1530–1541

    PubMed  CAS  Google Scholar 

  13. Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3, 4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70:1079–1086. doi:10.1124/mol.106.024703

    Article  PubMed  CAS  Google Scholar 

  14. Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64:919–924

    PubMed  CAS  Google Scholar 

  15. Korytowski W, Sarna T, Kalyanaraman B, Sealy RC (1987) Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry. Biochim Biophys Acta 924:383–392

    PubMed  CAS  Google Scholar 

  16. Foppoli C, Coccia R, Cini C, Rosei MA (1997) Catecholamines oxidation by xanthine oxidase. Biochim Biophys Acta 1334:200–206

    PubMed  CAS  Google Scholar 

  17. Rosei MA, Blarzino C, Foppoli C, Mosca L, Coccia R (1994) Lipoxygenase-catalyzed oxidation of catecholamines. Biochem Biophys Res Commun 200:344–350. doi:10.1006/bbrc.1994.1454

    Article  PubMed  CAS  Google Scholar 

  18. Fornstedt B, Rosengren E, Carlsson A (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology 25:451–454. doi:10.1016/0028-3908(86)90242-X

    Article  PubMed  CAS  Google Scholar 

  19. Ito S, Fujita K (1982) Conjugation of dopa and 5-S-cysteinyldopa with cysteine mediated by superoxide radical. Biochem Pharmacol 31:2887–2889. doi:10.1016/0006-2952(82)90161-7

    Article  PubMed  CAS  Google Scholar 

  20. Fornai F, Lenzi P, Gesi M, Ferrucci M, Lazzeri G, Busceti CL et al (2003) Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J Neurosci 23:8955–8966

    PubMed  CAS  Google Scholar 

  21. Yoshimoto Y, Nakaso K, Nakashima K (2005) l-DOPA and dopamine enhance the formation of aggregates under proteasome inhibition in PC12 cells. FEBS Lett 579:1197–1202. doi:10.1016/j.febslet.2004.12.091

    Article  PubMed  CAS  Google Scholar 

  22. Keller JN, Huang FF, Dimayuga ER, Maragos WF (2000) Dopamine induces proteasome inhibition in neural PC12 cell line. Free Radic Biol Med 29:1037–1042. doi:10.1016/S0891-5849(00)00412-3

    Article  PubMed  CAS  Google Scholar 

  23. Kuhn DM, Arthur RE Jr, Thomas DM, Elferink LA (1999) Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease. J Neurochem 73:1309–1317. doi:10.1046/j.1471-4159.1999.0731309.x

    Article  PubMed  CAS  Google Scholar 

  24. Xu Y, Stokes AH, Roskoski RJ, Vrana KE (1998) Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res 54:691–697. doi :10.1002/(SICI)1097-4547(19981201)54:5<691::AID-JNR14>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  25. Whitehead RE, Ferrer JV, Javitch JA, Justice JB (2001) Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem 76:1242–1251. doi:10.1046/j.1471-4159.2001.00125.x

    Article  PubMed  CAS  Google Scholar 

  26. Machida Y, Chiba T, Takayanagi A, Tanaka Y, Asanuma M, Ogawa N et al (2005) Common anti-apoptotic roles of parkin and alpha-synuclein in human dopaminergic cells. Biochem Biophys Res Commun 332:233–240. doi:10.1016/j.bbrc.2005.04.124

    Article  PubMed  CAS  Google Scholar 

  27. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294:1346–1349. doi:10.1126/science.1063522

    Article  PubMed  CAS  Google Scholar 

  28. Goldberg MS, Lansbury PT Jr, Helfand SL (2000) Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2:E115–E119. doi:10.1038/35041081

    Article  PubMed  CAS  Google Scholar 

  29. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576. doi:10.1073/pnas.97.2.571

    Article  PubMed  CAS  Google Scholar 

  30. Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC et al (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819. doi:10.1021/bi0102398

    Article  PubMed  CAS  Google Scholar 

  31. Kuhn DM, Arthur R Jr (1998) Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons. J Neurosci 18:7111–7117

    PubMed  CAS  Google Scholar 

  32. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A et al (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508. doi:10.1056/NEJMoa033447

    Article  PubMed  CAS  Google Scholar 

  33. Asanuma M, Miyazaki I, Diaz-Corrales FJ, Shimizu M, Tanaka K, Ogawa N (2005) Pramipexole has ameliorating effects on levodopa-induced abnormal dopamine turnover in parkinsonian striatum and quenching effects on dopamine-semiquinone generated in vitro. Neurol Res 27:533–539. doi:10.1179/016164105X22093

    Article  PubMed  CAS  Google Scholar 

  34. Ogawa N, Tanaka K, Asanuma M (2000) Bromocriptine markedly suppresses levodopa-induced abnormal increase of dopamine turnover in the parkinsonian striatum. Neurochem Res 25:755–758. doi:10.1023/A:1007530720544

    Article  PubMed  CAS  Google Scholar 

  35. Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 32:117–131. doi:10.1016/S0197-0186(97)00031-4

    Article  PubMed  CAS  Google Scholar 

  36. Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17:1775–1788. doi:10.1096/fj.03-0073rev

    Article  PubMed  CAS  Google Scholar 

  37. Kita T, Wagner GC, Nakashima T (2003) Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J Pharmacol Sci 92:178–195. doi:10.1254/jphs.92.178

    Article  PubMed  CAS  Google Scholar 

  38. Cubells JF, Rayport S, Rajendran G, Sulzer D (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 14:2260–2271

    PubMed  CAS  Google Scholar 

  39. Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci 19:2424–2431

    PubMed  CAS  Google Scholar 

  40. LaVoie MJ, Hastings TG (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 19:1484–1491

    PubMed  CAS  Google Scholar 

  41. Emdadul Haque M, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N (2003) Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells. Biochim Biophys Acta 1619:39–52

    PubMed  CAS  Google Scholar 

  42. Haque ME, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N (2003) Overexpression of Cu-Zn superoxide dismutase protects neuroblastoma cells against dopamine cytotoxicity accompanied by increase in their glutathione level. Neurosci Res 47:31–37. doi:10.1016/S0168-0102(03)00166-4

    Article  PubMed  CAS  Google Scholar 

  43. Lai CT, Yu PH (1997) Dopamine- and l-beta-3, 4-dihydroxyphenylalanine hydrochloride (l-DOPA)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem Pharmacol 53:363–372. doi:10.1016/S0006-2952(96)00731-9

    Article  PubMed  CAS  Google Scholar 

  44. Offen D, Ziv I, Sternin H, Melamed E, Hochman A (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp Neurol 141:32–39. doi:10.1006/exnr.1996.0136

    Article  PubMed  CAS  Google Scholar 

  45. Chinta SJ, Andersen JK (2006) Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson’s disease. Free Radic Biol Med 41:1442–1448. doi:10.1016/j.freeradbiomed.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  46. Chinta SJ, Kumar MJ, Hsu M, Rajagopalan S, Kaur D, Rane A et al (2007) Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 27:13997–14006. doi:10.1523/JNEUROSCI.3885-07.2007

    Article  PubMed  CAS  Google Scholar 

  47. Solano RM, Casarejos MJ, Menendez-Cuervo J, Rodriguez-Navarro JA, Garcia de Yebenes J, Mena MA (2008) Glial dysfunction in parkin null mice: effects of aging. J Neurosci 28:598–611. doi:10.1523/JNEUROSCI.4609-07.2008

    Article  PubMed  CAS  Google Scholar 

  48. Penkowa M (2006) Metallothioneins are multipurpose neuroprotectants during brain pathology. FEBS J 273:1857–1870. doi:10.1111/j.1742-4658.2006.05207.x

    Article  PubMed  CAS  Google Scholar 

  49. Xie T, Tong L, McCann UD, Yuan J, Becker KG, Mechan AO et al (2004) Identification and characterization of metallothionein-1 and -2 gene expression in the context of (+/−)3, 4-methylenedioxymethamphetamine-induced toxicity to brain dopaminergic neurons. J Neurosci 24:7043–7050. doi:10.1523/JNEUROSCI.1626-04.2004

    Article  PubMed  CAS  Google Scholar 

  50. Aschner M (1998) Metallothionein (MT) isoforms in the central nervous system (CNS): regional and cell-specific distribution and potential functions as an antioxidant. Neurotoxicology 19:653–660

    PubMed  CAS  Google Scholar 

  51. Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J (1999) CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci 19:2535–2545

    PubMed  CAS  Google Scholar 

  52. Miura T, Muraoka S, Ogiso T (1997) Antioxidant activity of metallothionein compared with reduced glutathione. Life Sci 60:PL301–309

    Article  CAS  Google Scholar 

  53. Hussain S, Slikker W Jr, Ali SF (1996) Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection. Neurochem Int 29:145–152. doi:10.1016/0197-0186(95)00114-X

    Article  PubMed  CAS  Google Scholar 

  54. Ebadi M, Ramana Kumari MV, Hiramatsu M, Hao R, Pfeiffer RF, Rojas P (1998) Metallothionein, neurotrophins and selegiline in providing neuroprotection in Parkinson’s disease. Restor Neurol Neurosci 12:103–111

    PubMed  CAS  Google Scholar 

  55. Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337. doi:10.1016/0891-5849(93)90029-T

    Article  PubMed  CAS  Google Scholar 

  56. Miyazaki I, Asanuma M, Hozumi H, Miyoshi K, Sogawa N (2007) Protective effects of metallothionein against dopamine quinone-induced dopaminergic neurotoxicity. FEBS Lett 581:5003–5008. doi:10.1016/j.febslet.2007.09.046

    Article  PubMed  CAS  Google Scholar 

  57. Cadenas E, Mira D, Brunmark A, Lind C, Segura-Aguilar J, Ernster L (1988) Effect of superoxide dismutase on the autoxidation of various hydroquinones—a possible role of superoxide dismutase as a superoxide:semiquinone oxidoreductase. Free Radic Biol Med 5:71–79. doi:10.1016/0891-5849(88)90032-9

    Article  PubMed  CAS  Google Scholar 

  58. Hara H, Ohta M, Ohta K, Kuno S, Adachi T (2003) Increase of antioxidative potential by tert-butylhydroquinone protects against cell death associated with 6-hydroxydopamine-induced oxidative stress in neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res 119:125–131. doi:10.1016/j.molbrainres.2003.08.021

    Article  PubMed  CAS  Google Scholar 

  59. Munday R, Smith BL, Munday CM (1998) Effects of butylated hydroxyanisole and dicoumarol on the toxicity of menadione to rats. Chem Biol Interact 108:155–170. doi:10.1016/S0009-2797(97)00105-1

    Article  PubMed  CAS  Google Scholar 

  60. Duffy S, So A, Murphy TH (1998) Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J Neurochem 71:69–77

    PubMed  CAS  Google Scholar 

  61. Zafar KS, Inayat-Hussain SH, Siegel D, Bao A, Shieh B, Ross D (2006) Overexpression of NQO1 protects human SK-N-MC neuroblastoma cells against dopamine-induced cell death. Toxicol Lett 166:261–267. doi:10.1016/j.toxlet.2006.07.340

    Article  PubMed  CAS  Google Scholar 

  62. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278:12029–12038. doi:10.1074/jbc.M211558200

    Article  PubMed  CAS  Google Scholar 

  63. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86. doi:10.1101/gad.13.1.76

    Article  PubMed  CAS  Google Scholar 

  64. Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M (2004) Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci USA 101:2046–2051. doi:10.1073/pnas.0308347100

    Article  PubMed  CAS  Google Scholar 

  65. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M et al (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 101:2040–2045. doi:10.1073/pnas.0307301101

    Article  PubMed  CAS  Google Scholar 

  66. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913. doi:10.1073/pnas.172398899

    Article  PubMed  CAS  Google Scholar 

  67. Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP (2006) DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci USA 103:15091–15096. doi:10.1073/pnas.0607260103

    Article  PubMed  CAS  Google Scholar 

  68. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567

    PubMed  CAS  Google Scholar 

  69. Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88:494–501

    PubMed  CAS  Google Scholar 

  70. Kielian T, Drew PD (2003) Effects of peroxisome proliferator-activated receptor-gamma agonists on central nervous system inflammation. J Neurosci Res 71:315–325. doi:10.1002/jnr.10501

    Article  PubMed  CAS  Google Scholar 

  71. Kim EH, Surh YJ (2006) 15-deoxy-Delta12, 4-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors. Biochem Pharmacol 72:1516–1528. doi:10.1016/j.bcp.2006.07.030

    Article  PubMed  CAS  Google Scholar 

  72. Hearing VJ, Ekel TM (1976) Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. Biochem J 157:549–557

    PubMed  CAS  Google Scholar 

  73. Miranda M, Botti D (1983) Harding-passey mouse-melanoma tyrosinase inactivation by reaction products and activation by l-epinephrine. Gen Pharmacol 14:231–237. doi:10.1016/0306-3623(83)90002-2

    PubMed  CAS  Google Scholar 

  74. Hasegawa T, Matsuzaki M, Takeda A, Kikuchi A, Furukawa K, Shibahara S et al (2003) Increased dopamine and its metabolites in SH-SY5Y neuroblastoma cells that express tyrosinase. J Neurochem 87:470–475. doi:10.1046/j.1471-4159.2003.02008.x

    Article  PubMed  CAS  Google Scholar 

  75. Higashi Y, Asanuma M, Miyazaki I, Ogawa N (2000) Inhibition of tyrosinase reduces cell viability in catecholaminergic neuronal cells. J Neurochem 75:1771–1774. doi:10.1046/j.1471-4159.2000.0751771.x

    Article  PubMed  CAS  Google Scholar 

  76. Mattammal MB, Strong R, Lakshmi VM, Chung HD, Stephenson AH (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease. J Neurochem 64:1645–1654

    PubMed  CAS  Google Scholar 

  77. Ferger B, Teismann P, Earl CD, Kuschinsky K, Oertel WH (1999) Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice. Naunyn Schmiedebergs Arch Pharmacol 360:256–261. doi:10.1007/s002109900079

    Article  PubMed  CAS  Google Scholar 

  78. Aubin N, Curet O, Deffois A, Carter C (1998) Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J Neurochem 71:1635–1642

    Article  PubMed  CAS  Google Scholar 

  79. Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39:167–174. doi :10.1002/1098-2396(200102)39:2<167::AID-SYN8>3.0.CO;2-U

    Article  PubMed  CAS  Google Scholar 

  80. Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S et al (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 100:5473–5478. doi:10.1073/pnas.0837397100

    Article  PubMed  CAS  Google Scholar 

  81. Asanuma M, Tsuji T, Miyazaki I, Miyoshi K, Ogawa N (2003) Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug. Neurosci Lett 352:13–16. doi:10.1016/j.neulet.2003.08.015

    Article  PubMed  CAS  Google Scholar 

  82. Chae SW, Bang YJ, Kim KM, Lee KY, Kang BY, Kim EM et al (2007) Role of cyclooxygenase-2 in tetrahydrobiopterin-induced dopamine oxidation. Biochem Biophys Res Commun 359:735–741. doi:10.1016/j.bbrc.2007.05.190

    Article  PubMed  CAS  Google Scholar 

  83. Asanuma M, Miyazaki I, Ogawa N (2004) Neuroprotective effects of nonsteroidal anti-inflammatory drugs on neurodegenerative diseases. Curr Pharm Des 10:695–700. doi:10.2174/1381612043453072

    Article  PubMed  CAS  Google Scholar 

  84. Jaradat MS, Wongsud B, Phornchirasilp S, Rangwala SM, Shams G, Sutton M et al (2001) Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen, and indomethacin. Biochem Pharmacol 62:1587–1595. doi:10.1016/S0006-2952(01)00822-X

    Article  PubMed  CAS  Google Scholar 

  85. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272:3406–3410. doi:10.1074/jbc.272.6.3406

    Article  PubMed  CAS  Google Scholar 

  86. Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B et al (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20:5709–5714

    PubMed  CAS  Google Scholar 

  87. Tanaka K, Miyazaki I, Fujita N, Haque ME, Asanuma M, Ogawa N (2001) Molecular mechanism in activation of glutathione system by ropinirole, a selective dopamine D2 agonist. Neurochem Res 26:31–36. doi:10.1023/A:1007672414239

    Article  PubMed  CAS  Google Scholar 

  88. Iida M, Miyazaki I, Tanaka K, Kabuto H, Iwata-Ichikawa E, Ogawa N (1999) Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 838:51–59. doi:10.1016/S0006-8993(99)01688-1

    Article  PubMed  CAS  Google Scholar 

  89. Yoshioka M, Tanaka K, Miyazaki I, Fujita N, Higashi Y, Asanuma M et al (2002) The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals. Neurosci Res 43:259–267. doi:10.1016/S0168-0102(02)00040-8

    Article  PubMed  CAS  Google Scholar 

  90. Le WD, Jankovic J, Xie W, Appel SH (2000) Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm 107:1165–1173. doi:10.1007/s007020070030

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Young Scientists (B) and for Scientific Research (C) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology, and by Health and Labour Sciences Research Grants for Research on Measures for Intractable Diseases, for Research on Regulatory Science of Pharmaceuticals and Medical Devices, and for Special Research from the Japanese Ministry of Health, Labour and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuko Miyazaki.

Additional information

Special issue article in honor of Dr. Akitane Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, I., Asanuma, M. Approaches to Prevent Dopamine Quinone-Induced Neurotoxicity. Neurochem Res 34, 698–706 (2009). https://doi.org/10.1007/s11064-008-9843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9843-1

Keywords

Navigation