Skip to main content

Advertisement

Log in

Cellular Elements of the Blood-Brain Barrier

  • Review Article
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The Blood-brain-barrier (BBB) provides both anatomical and physiological protection for the central nervous system (CNS), shielding the brain for toxic substances in the blood, supplying brain tissues with nutrients and filtering harmful compounds from the brain back to the bloodstream. The BBB is composed of four main cellular elements: endothelial cells (ECs), astrocyte end-feet, microglial cells, and perycites. Transport across the BBB is limited by both physical and metabolic barriers (enzymes, and different transport systems). Tight junctions (TJs) present between ECs form an important barrier against diffusion, excluding most blood-borne substances for entering the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pardridge WM (2005) Molecular biology of the blood-brain-barrier. Mol Biotechnol 30:57–70

    CAS  PubMed  Google Scholar 

  2. Abbott NJ, Romero IA (1996) Transporting therapeutics across the blood-brain barrier. Mol Med Today 2:106–111

    CAS  PubMed  Google Scholar 

  3. Begley D, Brightman MW (2003) Structural and functional aspects of the blood-brain-barrier. In: Prokai L, Prokai-Tatrai K (eds) Peptide transport and delivery into the central nervous system. Progress in drug research. Birkhauser Verlag, Basel, pp 39–78

    Google Scholar 

  4. Begley DJ (2004) Efflux mechanisms in the central nervous system: a powerful influence on drug distribution within the brain. In: Sharma HS, Westman J (eds) Blood-spinal cord and brain barriers in health and disease. Elsevier, San Diego, pp 83–97

    Google Scholar 

  5. Prestcott L, Brightman MW (1998) Circunventricular organs of the brain. In: Pardridge WM (ed) Introduction to the blood-brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge, pp 270–276

    Google Scholar 

  6. Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM (2008) Barriers in the brain: a renaissance. Trends Neurosci 31:279–286

    CAS  PubMed  Google Scholar 

  7. Pardridge WM (1999) A morphological approach to the analysis of blood-brain-barrier transport function. In: Paulson O, Knudsen G, Moos T (eds) Brain barrier systems. Munkgaard, Copenhagen, pp 39–78

    Google Scholar 

  8. Farell CL, Pardridge WM (1991) Blood-brain-barrier glucose transporter is symmetrically distributed on brain capillary endothelial luminal and abluminal membranes: an electronic microscopic immunogold study. Proc Natl Acad Sci USA 88:5779–5783

    Google Scholar 

  9. Vorbrodt AW (1993) Morphological evidence of the functional polarization of brain microvascular endothelium. In: Pardridge WM (ed) The blood-brain-barrier. Raven, New York, pp 137–164

    Google Scholar 

  10. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–667

    CAS  PubMed  Google Scholar 

  11. Lane NJ, Reese TJ, Kacher B (1992) Structural domains of the tight junctional intramembrane fibrils. Tissue Cell 24:291–300

    CAS  PubMed  Google Scholar 

  12. Bearer EL, Orci L (1985) Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J Cell Biol 100:418–428

    CAS  PubMed  Google Scholar 

  13. Dorovini-Zis K, Prameya R, Bowman PD (1991) Culture and characterization of microvascular endothelial cells derived from human brain. Lab Invest 64:425–436

    CAS  PubMed  Google Scholar 

  14. Villegas JC, Broadwell RD (1993) Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGA-HRP and the blood-brain and blood-brain barriers. J Neurocytol 22:67–80

    CAS  PubMed  Google Scholar 

  15. Wolburg H (2006) The endothelial frontier. In: Dermietzel R, Spray DC, Nedergaard M (eds) From ontogeny to artificial barriers. Willey-VCH, Weinheim, pp 77–109

    Google Scholar 

  16. Furuse M, Hirase T, Itoh A, Nagafuchi A, Yomemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    CAS  PubMed  Google Scholar 

  17. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    CAS  PubMed  Google Scholar 

  18. Furuse M, Hata M, Furuse K, Yoshida Y, Harakate A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    CAS  PubMed  Google Scholar 

  19. Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1391–1401

    Google Scholar 

  20. Hirase T, Kawashima S, Wong EYM, Ueyama T, Rikitake Y, Tsukita S, Yokoyama M, Staddon JM (2001) Regulation of tight junction permeability and occludin phosphorylation by RhoA-p160 ROCK-dependent and independent mechanisms. J Biol Chem 276:10423–10431

    CAS  PubMed  Google Scholar 

  21. Balda MS, Matter K (2000) Transmembrane proteins of tight junctions. Semin Cell Dev Biol 11:281–289

    CAS  PubMed  Google Scholar 

  22. Bamforth SD, Kniesel U, Wolburg H, Engelhardt B, Risau W (1999) A dominant mutant occludin disrupts tight junction structure and function. J Cell Sci 112:1879–1888

    CAS  PubMed  Google Scholar 

  23. Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M (2005) Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta 1669:34–42

    CAS  PubMed  Google Scholar 

  24. Piontek J, Winkler L, Wolburg H, Muller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE (2008) Formation of tight junction: determinants of homophilic interactions between classic claudins. FASEB J 22:146–158

    CAS  PubMed  Google Scholar 

  25. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occluding, a component of tight junctions strands. Mol Biol Cell 11:4131–4142

    CAS  PubMed  Google Scholar 

  26. Tsukita S, Furuse M (2000) Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149:13–16

    CAS  PubMed  Google Scholar 

  27. Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini RA (1999) CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99:649–659

    CAS  PubMed  Google Scholar 

  28. Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273

    CAS  PubMed  Google Scholar 

  29. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain-barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    CAS  PubMed  Google Scholar 

  30. Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain-barrier. Nat Med 9:900–906

    CAS  PubMed  Google Scholar 

  31. Miyamori H, Takino T, Kobayashi Y, Tokai H, Itoh Y, Seiki M, Sato H (2001) Claudin promotes activation of Pro-MMP-2 mediated by membrane-type matrix metalloproteinases. J Biol Chem 276:28204–28211

    CAS  PubMed  Google Scholar 

  32. Bazzoni G, Tonetti P, Manzi L, Cera MR, Balconi G, Dejama E (2005) Expression of junctional adhesion molecule-A prevents spontaneous and random motility. J Cell Sci 118:623–632

    CAS  PubMed  Google Scholar 

  33. Nasdala I, Wolburg-Bucholz K, Wolburg H, Kuhn A, Ebnet K, Brachtendorf G, Samulowitz U, Kuster B, Engelhardt B, Westweber D, Butz S (2002) A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem 277:16294–16303

    CAS  PubMed  Google Scholar 

  34. Martin-Padura I, Lostaglio S, Schneemann M, Willimas L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    CAS  PubMed  Google Scholar 

  35. Aurronds-Lions M, Duncan L, Ballestrem C, Imhof BA (2001) JAM-2, a novel immunoglobulin superfamily molecules, expressed by endothelial and lymphatic cells. J Cell Chem 276:2733–2741

    Google Scholar 

  36. Palmeri D, van Zante A, Huang CC, Hemmerich S, Rosen SD (2000) Vascular endothelial junctions-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem 275:19139–19145

    CAS  PubMed  Google Scholar 

  37. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    CAS  PubMed  Google Scholar 

  38. Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junctions, interacts with ZO-1 and occludin. J Cell Biol 141:199–208

    CAS  PubMed  Google Scholar 

  39. Ebnet K, Schulz CU, Meyer ZU, Brickwedde MK, Pendl GG, Westweber D (2000) Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 275:27979–27988

    CAS  PubMed  Google Scholar 

  40. Citi S, Sabanay H, Kendrick-Jones J, Geiger B (1989) Cingulin: characterization and localization. J Cell Sci 93:107–122

    CAS  PubMed  Google Scholar 

  41. Zhong Y, Saitoh T, Minase T, Sawada N, Enomoto K, Mori M (1993) Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J Cell Biol 120:477–483

    CAS  PubMed  Google Scholar 

  42. Ebnet K, Suzuki A, Ohno S, Westweber D (2004) Junctional adhesion molecules (JAMS): more molecules with dual functions? J Cell Sci 117:19–29

    CAS  PubMed  Google Scholar 

  43. Anastasiadis PZ, Reynolds AB (2000) The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci 113:1319–1334

    CAS  PubMed  Google Scholar 

  44. Lampugnani MG, Dejana E (2007) Adherens junctions in endothelial cells regulate vessel maintenance and angiogenesis. Thromb Res 120:S1–S6

    PubMed  Google Scholar 

  45. Zlokovic BV (2008) The blood-brain-barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    CAS  PubMed  Google Scholar 

  46. Gerhardt H, Liebner S, Redies C, Wolburg H (1999) N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Eur J Neurosci 11:1191–1201

    CAS  PubMed  Google Scholar 

  47. Ayalon O, Sabanai H, Lampugnani MG, Dejana E, Geiger B (1994) Spatial and temporal relationship between cadherins and PECAM-1 in cell–cell junctions of human endothelial cells. J Cell Biol 126:247–258

    CAS  PubMed  Google Scholar 

  48. Buckley CD, Doyonnas R, Newton JP, Blystone SD, Brown EJ, Watt SM, Simmons DL (1996) Identification of alpha v beta 3 as a heterotypic ligand for CD31/PECAM-1. J Cell Sci 109:437–445

    CAS  PubMed  Google Scholar 

  49. Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, Davis S, Ruddle NH, Engelhardt B, Madri JA (2002) Altered vascular permeability and early onset of experimental allergic encephalomyelitis in PECAM-1 deficient mice. J Clin Invest 109:383–392

    CAS  PubMed  Google Scholar 

  50. Floris S, Ruuls SR, Wierinckx A, van der Pol SM, Dopp E, van der Meide PH, Dijkstra CD, De Vries HE (2002) Interferon-beta directly influences monocyte infiltration into the central nervous system. J Neuroimmunol 127:69–79

    CAS  PubMed  Google Scholar 

  51. Jones AR, Shusta EV (2007) Blood-brain-barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771

    CAS  PubMed  Google Scholar 

  52. Vorbrodt AW (1988) Ultrastructural cytochemistry of blood-brain-barrier endothelia. Prog Histochem Cytochem 18:1–99

    CAS  PubMed  Google Scholar 

  53. OíDonnell ME, Lam TI, Tran LQ (2006) Estradiol reduces activity of the blood-brain-barrier Na-K-Cl contransporter and decreases edema formation in permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 26:1234–1249

    Google Scholar 

  54. Hernan DM, Basetti CL (2007) Indications of ATP-binding cassette transporters for brain pharmacotherapies. Trends Pharmacol Sci 28:128–134

    Google Scholar 

  55. Fricker G, Miller DS (2004) Modulation of drug transporters at the blood-brain-barrier. Pharmacology 70:169–176

    CAS  PubMed  Google Scholar 

  56. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    CAS  PubMed  Google Scholar 

  57. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multi-drug-resistance gene product P-glycoproetin in normal human tissues. Proc Natl Acad Sci USA 84:7735–7738

    CAS  PubMed  Google Scholar 

  58. Bendayan R, Ronaldson PT, Gingras D, Bendayan M (2006) In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem 54:1159–1167

    CAS  PubMed  Google Scholar 

  59. Schinkel AH, Jonker J (2003) Mammalian drug efflux transporters of ATP-binding cassette (ABC) family: an overview. Adv Drug Deliv 55:3–29

    CAS  Google Scholar 

  60. Zhang Y, Schueltz JD, Elmquist WF, Miller DW (2004) Plasma membrane localization of multidrug resistance-associated protein homologies in brain capillary endothelial cells. J Pharmacol Exp Ther 311:449–455

    CAS  PubMed  Google Scholar 

  61. Fenart L, BuÈe-Scherrer V, Descamps L, Duhem C, Poullain MG, Cecchelli R, Dehouck MP (1998) Inhibition of P-glycoprotein: rapid assessment of its implication in blood-brain-barrier integrity and drug transport to the brain by an in vitro model of the blood-brain-barrier. Pharm Res 15:993–1000

    CAS  PubMed  Google Scholar 

  62. Brown VI, Greene MI (1991) Molecular and cellular mechanisms of receptor-mediated endocytosis. DNA Cell Biol 10:399–409

    CAS  PubMed  Google Scholar 

  63. Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738

    CAS  PubMed  Google Scholar 

  64. Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 23:1161–1168

    CAS  PubMed  Google Scholar 

  65. Virgintino D, Robertson D, Erreded M, Benagiano V, Tauer U, Roncali L, Bertossi M (2002) Expression of caveolin-1 in human brain microvessels. Neuroscience 115:145–152

    CAS  PubMed  Google Scholar 

  66. Pardridge WM (2007) Blood-brain-barrier delivery. Drug Discov Today 12:54–61

    CAS  PubMed  Google Scholar 

  67. Boer AG, Gaillard PJ (2007) Strategies to improve drug delivery across the blood-brain barrier. Clin Pharmacokinet 46:553–576

    PubMed  Google Scholar 

  68. Cornford EM, Cornford ME (2002) New systems for delivery drugs to the brain in neurological diseases. Lancet Neurol 1:306–315

    CAS  PubMed  Google Scholar 

  69. Bickel U, Yoshikawa T, Pardridge WM (2001) Delivery of peptides and proteins through the blood-brain-barrier. Adv Drug Deliv Rev 46:247–279

    CAS  PubMed  Google Scholar 

  70. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Jantpour N, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ, Bard F (1991) A cell culture model of the blood-brain-barrier. J Cell Biol 115:1725–1735

    CAS  PubMed  Google Scholar 

  71. Abbott NJ, Revest PA, Romero IA (1992) Astrocyte–endothelial interaction: physiology and pathology. Neuropathol Appl Neurobiol 18:424–433

    CAS  PubMed  Google Scholar 

  72. Hayashi Y, Nombra M, Yamagishi S, Harada S, Yamashita J, Yamamoto H (1997) Induction of various blood-brain-barrier properties in non-neuronal endothelial cells by close apposition to co-cultured astrocytes. Glia 19:13–26

    CAS  PubMed  Google Scholar 

  73. Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T (1999) Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35:155–164

    CAS  PubMed  Google Scholar 

  74. McAllister MS, Krizanac-Bengez L, Macchia F, Naftalin RJ, Pedley KC, Mayberg MR, Marroni M, Leaman S, Stannes KA, Janigro D (2001) Mechanism of glucose transport at the blood brain barrier: an in vitro study. Brain Res 409:20–30

    Google Scholar 

  75. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte–endothelial interactions at the blood-brain-barrier. Nat Rev Neurosci 7:41–53

    CAS  PubMed  Google Scholar 

  76. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  77. Venero JL, Vizuete ML, Ilundain AA, Machado A, Echevarria M, Cano J (1999) Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience 94:239–250

    CAS  PubMed  Google Scholar 

  78. Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kri 4.1 and AQP4 in specific membrane domains. Glia 26:47–54

    CAS  PubMed  Google Scholar 

  79. Connors NC, Kofuji P (2002) Dystrophin DP71 is critical for the clustered localization of potassium channels in retinal glial cells. J Neurosci 22:4321–4327

    CAS  PubMed  Google Scholar 

  80. Amyry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC, Nagelhus EA, Adams ME, Froehner SC, Agre P, Ottersen OP (2003) Delyed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci USA 100:13615–13620

    Google Scholar 

  81. Raub TJ (1996) Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am J Physiol 271:C495–C503

    CAS  PubMed  Google Scholar 

  82. Deahouck B, Dehouck MP, Fruchard JC, Cechelli R (1994) Upregulation of the low density lipoprotein receptor at the blood-brain-barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 126:465–473

    Google Scholar 

  83. DeBault LE, Cancilla PA (1980) Gamma-Glutamiltranspeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science 207:653–655

    CAS  PubMed  Google Scholar 

  84. Nico B, Cantino D, Sassoe Pognetto M, Bertossi M, Ribatti D, Roncali L (1994) Orthogonal arrays of particles (OAPs) in perivascular astrocytes and tight junctions in endothelial cells. A comparative study in developing and adult brain microvessels. J Submicrosc Cytol Pathol 26:103–109

    CAS  PubMed  Google Scholar 

  85. Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain-barrier: development, composition and regulation. Vasc Pharmacol 38:323–337

    CAS  Google Scholar 

  86. Wolburg H, Neuhaus J, Pettmann B, Labourdette G, Sensenbrenner M (1986) Decrease in the density of orthogonal arrays particles in membranes of cultured rat astroglial cells by the brain fibroblast growth factor. Neurosci Lett 72:25–30

    CAS  PubMed  Google Scholar 

  87. Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200:617–627

    CAS  PubMed  Google Scholar 

  88. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257

    CAS  PubMed  Google Scholar 

  89. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendensen CN, Mucke L, Jhonson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scarforming, reactive astrocytes, in adult transgenic mice. Neuron 23:297–308

    CAS  PubMed  Google Scholar 

  90. Bauer HC, Bauer H (2000) Neural induction of the blood-brain barrier: still an enigma. Cell Mol Neurobiol 20:13–28

    CAS  PubMed  Google Scholar 

  91. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514

    CAS  PubMed  Google Scholar 

  92. Shepro D, Morel MM (1993) Perycite physiology. FASEB 7:1031–1038

    CAS  Google Scholar 

  93. Allt G, Lawrenson JG (2001) Peryciytes: cell biology and pathology. Cells Tissues Organs 169:1–11

    CAS  PubMed  Google Scholar 

  94. von Tell D, Armulik A, Betsholtz C (2006) Perycites and vascular stability. Exp Cell Res 312:623–629

    Google Scholar 

  95. Armulik A, Abramsson A, Bestsholtz C (2005) Endothelial/perycite interactions. Circ Res 97:512–523

    CAS  PubMed  Google Scholar 

  96. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGF-beta in recruitment of vascular smooth muscle cells and perycites during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    CAS  PubMed  Google Scholar 

  97. Lindahl BR, Johansson P, Leveen P, Betsholtz C (1997) Perycites loss and microaneurysms formation in PDGF-B-deficient mice. Science 277:242–245

    CAS  PubMed  Google Scholar 

  98. Dore-Duffy P, LaManna JC (2007) Physiologic angiodynamics in the brain. Antioxid Redox Signal 9:2449–2452

    Google Scholar 

  99. Papetti M, Shujath J, Riley KN, Herman IM (2003) FGF-2 antagonizes the TFG-beta1-mediated induction of perycite alpha-smooth muscle actin expression: a role of myf-5 and Smad-mediated signaling pathways. Invest Ophtalmol Vis Sci 44:4994–5005

    Google Scholar 

  100. Clements RT, Minnear FL, Singer HA, Keller RS, Vincent PA (2005) RhoA and Rho-kinase dependent and independent signals mediate TGF-beta-induced pulmonary endothelial cytoskeletal reorganization and permeability. Am J Physiol Lung Cell Mol Physiol 288:L294–L306

    CAS  PubMed  Google Scholar 

  101. Gonul E, Duz B, Kahraman S, Kayali H, Kubar A, Timurkaynak E (2002) Early pericyte response to brain hypoxia in cats: an ultrastructural study. Microvasc Res 64:116–119

    PubMed  Google Scholar 

  102. Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Perycite migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60:55–69

    CAS  PubMed  Google Scholar 

  103. Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS perycites. Brain Res Bull 51:363–369

    CAS  PubMed  Google Scholar 

  104. Chow N, Bell RD, Deane R, Streb JW, Chen J, Brooks A, Van Nostrand W, Miano JM, Zlokovic BV (2007) Serum response factor and myocardin mediate cerebral arterial hypercontractility and blood flow dysregulation in Alzheimerís phenotype. Proc Natl Acad Sci USA 104:823–828

    CAS  PubMed  Google Scholar 

  105. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915

    CAS  PubMed  Google Scholar 

  106. del Zoppo GJ, Millner R, Mabuchi T, Hung S, Wang X, Koziol JA (2006) Vascular matrix adhesion and the blood-brain-barrier. Biochem Soc Trans 34:1261–1266

    CAS  PubMed  Google Scholar 

  107. del Zoppo GJ, Millner R (2006) Integrin–matrix interactions in the cerebral microvasculature. Artherioscler Thromb Vasc Biol 26:1966–1975

    CAS  Google Scholar 

  108. Zlokovic BV (2006) Remodeling after stroke. Nat Med 12:390–391

    CAS  PubMed  Google Scholar 

  109. Rascher G, Fishmann A, Kroger S, Duffner F, Grote EH, Wolburg H (2002) Extracellular matrix and the blood-brain-barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol (Berlin) 104:85–91

    CAS  Google Scholar 

  110. Jian Liu K, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39:71–80

    CAS  PubMed  Google Scholar 

  111. Bechmann I, Galea I, Perry VH (2007) What is the blood-brain-barrier (not)? Trends Immunol 28:5–11

    CAS  PubMed  Google Scholar 

  112. Bechmann I, Goldmann J, Kovac AD, Kwidzinski E, Simburger E, Naftoli F, Dirnagl U, Nitsch R, Priller J (2005) Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J 19:647–649

    CAS  PubMed  Google Scholar 

  113. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone-marrow derived and present antigen in vivo. Science 239:290–292

    CAS  PubMed  Google Scholar 

  114. Hickey WF, Vass K, Lassmann H (1992) Bone-marrow derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51:246–256

    CAS  PubMed  Google Scholar 

  115. Zenker D, Begley D, Bratze H, Rubsamen-Waigmann H, von Briesen H (2003) Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J Physiol 551:1023–1032

    CAS  PubMed  Google Scholar 

  116. Fabriek BO, van Haastert ES, Galea I, Polfliet MMJ, Döpp ED, van den Heuvel MM, van den Berg TK, De Groot CJA, van der Valk P, Dijstra CD (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51:297–305

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Adriana Zufriategui for preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Correale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correale, J., Villa, A. Cellular Elements of the Blood-Brain Barrier. Neurochem Res 34, 2067–2077 (2009). https://doi.org/10.1007/s11064-009-0081-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0081-y

Keywords

Navigation