Skip to main content

Advertisement

Log in

Metformin Normalizes Type 2 Diabetes-Induced Decrease in Cell Proliferation and Neuroblast Differentiation in the Rat Dentate Gyrus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this study, we observed the effects of metformin, one of the most widely prescribed drugs for the treatment of type 2 diabetes, on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus (SZDG) in Zucker diabetic fatty (ZDF) rats, which are a model for type 2 diabetes. For this, metformin was administered orally once a day to 14-week-old ZDF rats for 2 weeks and the animals were sacrificed at 16 weeks of age. During this period, blood glucose levels were higher in the vehicle-treated ZDF rats than in the Zucker lean control (ZLC) rats. Metformin treatment significantly decreased the blood glucose levels from 15.5 weeks of age. In the SZDG, Ki67 (a marker for cell proliferation)- and doublecortin (DCX, a marker for differentiated neuroblasts)-immunoreactive cells were much lower in the vehicle-treated ZDF rats than in the ZLC rats. In the metformin-treated ZDF group, Ki67- and DCX-immunoreactive cells were significantly increased in the SZDG compared to those in the vehicle-treated ZDF group. These results suggest that diabetes significantly reduces cell proliferation and neuroblast differentiation in the SZDG and that metformin treatment normalizes the reduction of cell proliferation and neuroblast differentiation in the SZDG in diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cooper ME (2004) The role of the renin-angiotensin-aldosterone system in diabetes and its vascular complications. Am J Hypertens 17:16S–20S

    Article  CAS  PubMed  Google Scholar 

  2. Sharma R, Sharma M, Reddy S, Savin VJ, Nagaria AM, Wiegmann TB (2006) Chronically increased intrarenal angiotensin II causes nephropathy in an animal model of type 2 diabetes. Front Biosci 11:968–976

    Article  CAS  PubMed  Google Scholar 

  3. Kawashima R, Kojima H, Nakamura K et al (2007) Alterations in mRNA expression of myelin proteins in the sciatic nerves and brains of streptozotocin-induced diabetic rats. Neurochem Res 32:1002–1010

    Article  CAS  PubMed  Google Scholar 

  4. Shinbori C, Shirayama Y, Mitani H, Saito M, Satoh K (2008) Effects of cyclohexanonic long-chain fatty alcohol, tCFA15 on amino acids in diabetic rat brain: a preliminary study. Neurochem Res 33:1189–1195

    Article  CAS  PubMed  Google Scholar 

  5. Hwang IK, Yi SS, Kim YN et al (2008) Reduced hippocampal cell differentiation in the subgranular zone of the dentate gyrus in a rat model of type II diabetes. Neurochem Res 33:394–400

    Article  CAS  PubMed  Google Scholar 

  6. Yi SS, Hwang IK, Yoo KY et al (2009) Effects of treadmill exercise on cell proliferation and differentiation in the subgranular zone of the dentate gyrus in a rat model of type II diabetes. Neurochem Res 34:1039–1046

    Article  CAS  PubMed  Google Scholar 

  7. Lang BT, Yan Y, Dempsey RJ, Vemuganti R (2009) Impaired neurogenesis in adult type-2 diabetic rats. Brain Res 1258:25–33

    Article  CAS  PubMed  Google Scholar 

  8. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11:309–317

    Article  CAS  PubMed  Google Scholar 

  9. Hundal HG, Ramldal T, Reyes R, Leiter LA (1992) Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology 131:1165–1173

    Article  CAS  PubMed  Google Scholar 

  10. Klip A, Guma A, Ramldal T, Bilan PJ, Lam L, Leiter LA (1992) Stimulation of hexose transport by metformin in L6 muscle cells in culture. Endocrinology 130:2535–2544

    Article  CAS  PubMed  Google Scholar 

  11. Nestler JE, Jakubowicz DJ, Evans WS, Pasquali R (1998) Effects of metformin on spontaneous and clomiphine-induced ovulation in the polycystic ovary syndrome. N Engl J Med 338:1876–1880

    Article  CAS  PubMed  Google Scholar 

  12. Wiernsperger NF, Bailey CJ (1999) The antihyperglycemic effect of metformin: therapeutic and cellular mechanisms. Drugs 58:31–39

    Article  CAS  PubMed  Google Scholar 

  13. Hardie DG (2007) AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47:185–210

    Article  CAS  PubMed  Google Scholar 

  14. Correia S, Carvalho C, Santos MS et al (2008) Metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. Med Chem 4:358–364

    Article  CAS  PubMed  Google Scholar 

  15. El-Mir MY, Detaille D, R-Villanueva G et al (2008) Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 34:77–87

    Article  CAS  PubMed  Google Scholar 

  16. Del Bigio MR (1999) Proliferative status of cells in adult human dentate gyrus. Microsc Res Tech 45:353–358

    Article  CAS  PubMed  Google Scholar 

  17. Francis F, Koulakoff A, Boucher D et al (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256

    Article  CAS  PubMed  Google Scholar 

  18. Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    Article  CAS  PubMed  Google Scholar 

  19. Metais C, Forcheron F, Abdallah P et al (2008) Adiponectin receptors: expression in Zucker diabetic rats and effects of fenofibrate and metformin. Metabolism 57:946–953

    Article  CAS  PubMed  Google Scholar 

  20. Atkinson LL, McDonald-Dyck C, Benkoczi C, Finegood DT (2008) Effect of chronic rosiglitazone, metformin and glyburide treatment on β-cell mass, function and insulin sensitivity in mZDF rats. Diabetes Obes Metab 10:780–790

    Article  CAS  PubMed  Google Scholar 

  21. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier Academic Press, Amsterdam

    Google Scholar 

  22. Zucker LM, Zucker TF (1961) Fatty, a new mutation in the rat. J Hered 52:275–278

    Google Scholar 

  23. Etgen GJ, Oldham BA (2000) Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 49:684–688

    Article  CAS  PubMed  Google Scholar 

  24. Zhou G, Myers R, Li Y (2001) Role of AMP activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    CAS  PubMed  Google Scholar 

  25. Smith A, Mullen K, Junkin KA et al (2007) Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab 296:E172–E181

    Article  Google Scholar 

  26. Yu X, McCorkle S, Wang M et al (2004) Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. Diabetologia 47:2012–2021

    Article  CAS  PubMed  Google Scholar 

  27. Pold R, Jensen LS, Jessen N et al (2005) Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes 54:928–934

    Article  CAS  PubMed  Google Scholar 

  28. Rouru J, Huupponen R, Pesonen U, Koulu M (1992) Subchronic treatment with metformin produces anorectic effect and reduces hyperinsulinemia in genetically obese Zucker rats. Life Sci 50:1813–1820

    Article  CAS  PubMed  Google Scholar 

  29. Zang Y, Yu LF, Pang T et al (2008) AICAR induces astroglial differentiation of neural stem cells via activating the JAK/STAT3 pathway independently of AMP-activated protein kinase. J Biol Chem 283:6201–6208

    Article  CAS  PubMed  Google Scholar 

  30. Blázquez C, Geelen MJ, Velasco G, Guzmán M (2001) The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett 489:149–153

    Article  PubMed  Google Scholar 

  31. Culmsee C, Monnig J, Kemp BE, Mattson MP (2001) AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci 17:45–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee and Mrs. Hyun Sook Kim for their technical help in this study. This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MEST) (No. 2009-0071833).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeo Sung Yoon or Je Kyung Seong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.K., Kim, I.Y., Joo, E.J. et al. Metformin Normalizes Type 2 Diabetes-Induced Decrease in Cell Proliferation and Neuroblast Differentiation in the Rat Dentate Gyrus. Neurochem Res 35, 645–650 (2010). https://doi.org/10.1007/s11064-009-0115-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0115-5

Keywords

Navigation