Skip to main content

Advertisement

Log in

Senescence-Accelerated Mouse (SAM) with Special References to Neurodegeneration Models, SAMP8 and SAMP10 Mice

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Takeda T, Hosokawa M, Takeshita S et al (1981) A new murine model accelerated senescence. Mech Ageing Dev 17:183–194. doi:10.1016/0047-6374(81)90084-1

    Article  PubMed  CAS  Google Scholar 

  2. Hosokawa M, Kasai R, Higuchi K et al (1994) Grading score system: a method for evaluation of the degree of senescence in senescence accelerated mouse (SAM). Mech Ageing Dev 26:91–102. doi:10.1016/0047-6374(84)90168-4

    Article  Google Scholar 

  3. Takeda T, Hosokawa M, Higuchi K et al (1991) Senescence-accelerated mouse (SAM): a novel murine model of accelerated senescence. J Am Geriatr Soc 39:911–919

    PubMed  CAS  Google Scholar 

  4. Takeda T, Hosokawa M, Higuchi K (1994) Senescence-accelerated mouse (SAM): a novel murine model of aging. In: Takeda T (ed) The SAM model of senescence. Elsevier Science BV, Amsterdam, pp 15–22

    Google Scholar 

  5. Takeda T, Matsushita T, Kurozumi M et al (1997) Pathobiology of the senescence-accelerated mouse (SAM). Exp Gerontol 32:117–127. doi:10.1016/S0531-5565(96)00068-X

    Article  PubMed  CAS  Google Scholar 

  6. Takeda T (1999) Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 20:105–110. doi:10.1016/S0197-4580(99)00008-1

    Article  PubMed  CAS  Google Scholar 

  7. Cotran RS, Kumar V, Robbins SL (1989) Diseases of aging. In: Robbins pathologic basis of disease. W. B. Saunders Company, Philadelphia, pp 543–551

  8. Kitado H, Higuchi K, Takeda T (1994) Molecular genetic characterization of the senescence-accelerated mouse (SAM) strains. J Gerontol 49:B247–B254

    PubMed  CAS  Google Scholar 

  9. Mori M, Higuchi K (2004) Genetic monitering system for SAM strains utilizing DNA markers. Int Congr Ser 1260:187–190. doi:10.1016/S0531-5131(03)01579-6

    Article  CAS  Google Scholar 

  10. Miyamoto M, Kiyota Y, Yamazaki N et al (1986) Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol Behav 38:399–406. doi:10.1016/0031-9384(86)90112-5

    Article  PubMed  CAS  Google Scholar 

  11. Yagi H, Katoh S, Akiguchi I et al (1988) Age-related deterioration of ability of acquisition in memory and learning in senescence-accelerated mouse; SAM-P/8 as an animal model of disturbances in recent memory. Brain Res 474:86–93. doi:10.1016/0006-8993(88)90671-3

    Article  PubMed  CAS  Google Scholar 

  12. Miyamoto M, Kiyota Y, Nishiyama M et al (1992) Senescence-accelerated mouse (SAM): age-related reduced anxiety-like behavior in the SAM-P/8 strain. Physiol Behav 51:979–985. doi:10.1016/0031-9384(92)90081-C

    Article  PubMed  CAS  Google Scholar 

  13. Flood JF, Morley JE (1993) Age-related changes in foot shock avoidance acquisition and retention in senescence accelerated mouse (SAM). Neurobiol Aging 14:153–157. doi:10.1016/0197-4580(93)90091-O

    Article  PubMed  CAS  Google Scholar 

  14. Ohta A, Hirano Y, Yagi H et al (1989) Behavioral characteristics of the SAM-P/8 strain in Sidman active avoidance task. Brain Res 498:195–198. doi:10.1016/0006-8993(89)90421-6

    Article  PubMed  CAS  Google Scholar 

  15. Miyamoto M (1997) Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10. Exp Gerontol 32:139–148. doi:10.1016/S0531-5565(96)00061-7

    Article  PubMed  CAS  Google Scholar 

  16. Miyamoto M (1994) Characteristics of memory and behavioral disorders in SAMP8 mice. In: Takeda T (ed) The SAM model of senescence. Elsevier Science B.V, Amsterdam, pp 61–66

    Google Scholar 

  17. Markowska A, Spangler EL, Ingram DK (1998) Behavioral assessment senescence-accelerated mouse (SAMP8 and R1). Physiol Behav 64:15–26. doi:10.1016/S0031-9384(98)00011-0

    Article  PubMed  CAS  Google Scholar 

  18. Ikegami S, Shumiya S, Kawamura H (1992) Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM). Behav Brain Res 51:15–22. doi:10.1016/S0166-4328(05)80307-9

    Article  PubMed  CAS  Google Scholar 

  19. Flood JF, Morley JE (1992) Early onset of age-related impairment of aversive and appetitive learning in the SAM-P/8 mouse. J Gerontol Biol Sci 47:B52–B59

    CAS  Google Scholar 

  20. Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing antianxiety agenta. Psychopharmacology (Berl) 21:1–7. doi:10.1007/BF00403989

    Article  CAS  Google Scholar 

  21. Ida Y, Tanaka M, Tsuda A et al (1985) Attenuating effect of diazepam on stress-induced increases in noradrenalin turnover in specific brain regions of rats. Antagonism by Ro 15-1788. Life Sci 37:2491–2498. doi:10.1016/0024-3205(85)90606-X

    Article  PubMed  CAS  Google Scholar 

  22. Kitamura Y, Zhao XH, Ohnuki T et al (1989) Ligand-binding characteristics of [3H]QNB, [3H]prazocin, [3H]rauwolsine, [3H]TCP and [3H]nitrendipine to cerebral cortical and hippocampal membranes of senescence-accelerated mouse. Neurosci Lett 196:334–338. doi:10.1016/0304-3940(89)90186-9

    Article  Google Scholar 

  23. Zhao XH, Nomura Y (1990) Age-related changes in uptake and release on L-[3H]noradrenaline in brain slices of senescence-accelerated mouse. Int J Dev Neurosci 8:267–272. doi:10.1016/0736-5748(90)90032-W

    Article  PubMed  CAS  Google Scholar 

  24. Nishiyama M, Takahashi H, Miyamoto M (1994) Senescence-accelerated mouse (SAMP8): an animal model for age-related circadian rhythm disorder. In: Takeda T (ed) The SAM model of senescence. Elsevier Science BV, Amsterdam, pp 393–396

    Google Scholar 

  25. Akiguchi A, Akiyama H, Sugiyama H, et al. (1988) Morphological changes of the strain of senescence accelerated mouse (SAM-P/8). In: Takeda T, Matsuo T, Akiguchi I, Hosokawa M (eds) Proceedings of the first SAM Kyoto symposium. Fuji Printing Business Company, Kyoto, pp 67–76

  26. Sugiyama H, Akiyama H, Akiguchi I et al (1987) Loss of dendritic spines in hippocampal CA1 pyramidal cells of senescence accelerated mouse (SAM). A quantitative Golgi study. Clin Neurol 27:841–845

    CAS  Google Scholar 

  27. Kawamata T, Nakamura S, Akiguchi I (1994) Dystrophic changes in axon accumulating nitric oxide synthase are accelerated with age in dorsal colime nuclei of senescence-accelerated mice (SAMP8). In: Takeda T et al (eds) The SAM model of senescence. Elsevier Sciences BV, Amsterdam, pp 347–350

    Google Scholar 

  28. Takemura M, Nakamura S, Akiguchi I et al (1993) β/A4 protein-like granular structures in the brain of senescence-accelerated mouse. Am J Pathol 142:1887–1897

    PubMed  CAS  Google Scholar 

  29. Fukunari A, Kato A, Sasaki Y et al (1994) Colocalization of prolyl endopeptidase and amyloid β-peptide in brains of senescence-accelerated mouse. Neurosci Lett 176:201–204. doi:10.1016/0304-3940(94)90082-5

    Article  PubMed  CAS  Google Scholar 

  30. Kumar VB, Farr SA, Flood JF et al (2000) Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides 21:1769–1775. doi:10.1016/S0196-9781(00)00339-9

    Article  PubMed  CAS  Google Scholar 

  31. Morley JE, Kumar VB, Bernardo AE et al (2000) β-amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides 21:1761–1767. doi:10.1016/S0196-9781(00)00342-9

    Article  PubMed  CAS  Google Scholar 

  32. Kitamura Y, Yamanaka Y, Nagashima K (1994) The age-related increase in markers of astrocytes and amyloid precursor protein in the brain of senescence-accelerated mouse (SAM). In: Takeda T et al (eds) The SAM model of senescence. Elsevier Science BV, Amsterdam, pp 359–362

    Google Scholar 

  33. Akiyama H, Kameyama M, Akiguchi I et al (1986) Periodic acid-Schiff (PAS)-positive granular structures in the brain of senescence accelerated mouse (SAM). Acta Neuropathol 72:124–129. doi:10.1007/BF00685973

    Article  PubMed  CAS  Google Scholar 

  34. Jucker M, Walker LC, Schwarb P et al (1994) Age-related deposition of glia-associated fibrillar material in brains of C57BL/6 mice. Neuroscience 60:875–889. doi:10.1016/0306-4522(94)90269-0

    Article  PubMed  CAS  Google Scholar 

  35. Kuo H, Ingram DK, Walker LC et al (1996) Similarities in the age-related hippocampal deposition of periodic acid-Schiff-positive granules in the senescence-accelerated mouse P8 and C57BL/6 mouse strains. Neuroscience 74:733–740. doi:10.1016/0306-4522(96)00169-8

    Article  PubMed  CAS  Google Scholar 

  36. Yagi H, Irino M, Matsushita T et al (1989) Spontaneous spongy degeneration of the brain stem in SAM-P/8 mice, a newly developed memory deficient strain. J Neuropathol Exp Neurol 48:577–590. doi:10.1097/00005072-198909000-00008

    Article  PubMed  CAS  Google Scholar 

  37. Yagi H, Akiguchi I, Ohta A et al (1998) Spontaneous and artificial lesions of magnocellular reticular formation of brainstem deteriorate avoidance learning in senescence-accelerated mouse SAM. Brain Res 791:90–98. doi:10.1016/S0006-8993(98)00070-5

    Article  PubMed  CAS  Google Scholar 

  38. Gabriel M, Gregg B, Clancy A et al (1986) Brain stem reticular formation neural correlates of stimulus significance and behavior during discriminative avoidance conditioning in rabbits. Behav Neurosci 100:171–184. doi:10.1037/0735-7044.100.2.171

    Article  PubMed  CAS  Google Scholar 

  39. Kitabayashi T, Tomimoto H, Akiyama H et al (1993) Reactive microglia in the brain of senescence-accelerated mouse (SAM): an histochemical study. Can J Neurol Sci 20:146

    Google Scholar 

  40. Amano T, Nakanishi H, Oka M et al (1995) Increased expression of cathepsine E and D in reactive microglial cells associated with spongiform degeneration in the brain stem of senescence-accelerated mouse. Exp Neurol 136:171–182. doi:10.1006/exnr.1995.1094

    Article  PubMed  CAS  Google Scholar 

  41. Jeong BH, Jin JK, Choi EK et al (2002) Analysis of the expression of endogenous murine leukemia viruses in the brains of senescence-accelerated mice (SAMP8) and the relationship between expression and brain histopathology. J Neuropathol Exp Neurol 61:1001–1012

    PubMed  CAS  Google Scholar 

  42. Meeker HC, Carp RL (1997) Titers of murine leukemia virus are higher in brains of SAMP8 than SAMR1 mice. Neurobiol Aging 18:543–547. doi:10.1016/S0197-4580(97)00041-9

    Article  PubMed  CAS  Google Scholar 

  43. Carp RL, Meeker HC, Chung R et al (2002) Murine leukemia virus in organs of senescence-prone and–resistant mouse strains. Mech Ageing Dev 123:575–584. doi:10.1016/S0047-6374(01)00377-3

    Article  PubMed  CAS  Google Scholar 

  44. Nagasaki S, Ozono S, Kawamura K et al (1995) Regional differences in the age-related reduction of the cerebellar cortical thickness in senescence-accelerated mice. Med Sci Res 23:425–427

    Google Scholar 

  45. Zhu Y, Lee CC, Lam WC et al (2007) Cell death in the Purkinje cells of the cerebellum of senescence accelerated mouse (SAMP8). Biogerontology 8:537–544. doi:10.1007/s10522-007-9097-3

    Article  PubMed  Google Scholar 

  46. Fukutani Y, Cairns NJ, Rossor MN et al (1996) Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett 214:33–36. doi:10.1016/0304-3940(96)12875-5

    Article  PubMed  CAS  Google Scholar 

  47. Sjobeck M, Englund E (2001) Alzheimer’s disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord 12:211–218. doi:10.1159/000051260

    Article  PubMed  CAS  Google Scholar 

  48. Karasawa N, Nagatsu I, Sakai K et al (1997) Immunocytochemical study of catecholaminergic neurons in the senescence-accelerated mouse (SAM-P8) brain. J Neural Transm 104:1267–1275. doi:10.1007/BF01294727

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka J, Okuma Y, Tomobe K et al (2005) The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull 28:615–618. doi:10.1248/bpb.28.615

    Article  PubMed  CAS  Google Scholar 

  50. Kitamura Y, Zhao XH, Ohnuki T et al (1992) Age-related changes in transmitter glutamate and NMDA receptor/channels in the brain of senescence-accelerated mouse. Neurosci Lett 137:169–172. doi:10.1016/0304-3940(92)90396-O

    Article  PubMed  CAS  Google Scholar 

  51. Nomura Y, Kitamura Y, Ohnuki T et al (1997) Alterations in acetylcholine, NMDA, benzodiazepine receptors and protein kinase C in the brain of the senescence-accelerated mouse: an animal model useful for studies on cognitive enhancers. Behav Brain Res 83:51–55. doi:10.1016/S0166-4328(97)86045-7

    Article  PubMed  CAS  Google Scholar 

  52. Zhao XH, Kitamura Y, Nomura Y (1992) Age-related changes in NMDA-induced [3H]acetylcholine release from brain slices of senescence-accelerated mouse. Int J Dev Neurosci 10:121–129. doi:10.1016/0736-5748(92)90040-7

    Article  PubMed  CAS  Google Scholar 

  53. Nomura Y, Okuma Y (1999) Age-related deficits in lifespan and learning ability in SAMP8 mice. Neurobiol Aging 20:111–115. doi:10.1016/S0197-4580(99)00006-8

    Article  PubMed  CAS  Google Scholar 

  54. Armbrecht HJ, Boltz MA, Kumar VB et al (1999) Effect of age on calcium-dependent proteins in hippocampus of senescence-accelerated mice. Brain Res 842:287–293. doi:10.1016/S0006-8993(99)01802-8

    Article  PubMed  CAS  Google Scholar 

  55. Flood JF, Morley JE (1998) Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev 22(1):1–20. doi:10.1016/S0149-7634(96)00063-2

    Article  PubMed  CAS  Google Scholar 

  56. Strong R, Reddy V, Morley JE (2003) Cholinergic deficits in the septal-hippocampal pathway of the SAM-P/8 senescence accelerated mouse. Brain Res 966:150–156. doi:10.1016/S0006-8993(02)04192-6

    Article  PubMed  CAS  Google Scholar 

  57. Ojika K, Kojima S, Ueki Y et al (1992) Purification and structural analysis of hippocampal cholinergic neurostimulating peptide. Brain Res 572:164–171. doi:10.1016/0006-8993(92)90465-L

    Article  PubMed  CAS  Google Scholar 

  58. Matsukawa N, Tooyama I, Kimura H et al (1999) Increased expression of hippocampal cholinergic neurostimulating peptide-related components and their messenger RNAs in the hippocampus of aged senescence-accelerated mice. Neuroscience 88:79–92. doi:10.1016/S0306-4522(98)00215-2

    Article  PubMed  CAS  Google Scholar 

  59. Yamada K, Matsukawa N, Yuasa H et al (2007) Differential expression of HCNP-related antigens in hippocampus in senescence-accelerated mice. Brain Res 1158:169–175. doi:10.1016/j.brainres.2007.05.013

    Article  PubMed  CAS  Google Scholar 

  60. Nomura Y, Wang BX, Qi SB et al (1989) Biochemical changes related to aging in the senescence-accelerated mouse. Exp Gerontol 24:49–55. doi:10.1016/0531-5565(89)90034-X

    Article  PubMed  CAS  Google Scholar 

  61. Liu J, Mori A (1993) Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech Ageing Dev 71:23–30. doi:10.1016/0047-6374(93)90032-M

    Article  PubMed  CAS  Google Scholar 

  62. Edamatsu R, Mori A, Packer L (1995) The spin-trap N-tert-α-phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse. Biochem Biophys Res Commun 211:847–849. doi:10.1006/bbrc.1995.1889

    Article  PubMed  CAS  Google Scholar 

  63. Sato E, Oda N, Ozaki N et al (1996) Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse. Mech Ageing Dev 86:105–114. doi:10.1016/0047-6374(95)01681-3

    Article  PubMed  CAS  Google Scholar 

  64. Sato E, Kurokawa T, Oda N et al (1996) Early appearance of abnormality of microperoxisomal enzymes in the cerebral cortex of senescence-accelerated mouse. Mech Ageing Dev 92:175–184. doi:10.1016/S0047-6374(96)01832-5

    Article  PubMed  CAS  Google Scholar 

  65. Kurokawa T, Asada S, Nishitani S et al (2001) Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse. Neurosci Lett 298:135–138. doi:10.1016/S0304-3940(00)01755-9

    Article  PubMed  CAS  Google Scholar 

  66. Matsugo S, Kitagawa T, Minami S et al (2000) Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice. Neurosci Lett 278:105–108. doi:10.1016/S0304-3940(99)00907-6

    Article  PubMed  CAS  Google Scholar 

  67. Yasui F, Ishibashi M, Matsugo S et al (2003) Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age. Neurosci Lett 350:66–68. doi:10.1016/S0304-3940(03)00827-9

    Article  PubMed  CAS  Google Scholar 

  68. Okatani Y, Wakatsuki A, Reiter RJ et al (2002) Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging 23:639–644. doi:10.1016/S0197-4580(02)00005-2

    Article  PubMed  CAS  Google Scholar 

  69. Álvarez-Garcia Ó, Vega-Naredo I, Sierra V et al (2006) Elevated oxidative stress in the brain of senescence-accelerated mice. Biogerontology 7:43–52. doi:10.1007/s10522-005-6041-2

    Article  PubMed  CAS  Google Scholar 

  70. Sureda FX, Gutierrez-Cuesta J, Romeu M et al (2006) Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8. Exp Gerontol 41:360–367. doi:10.1016/j.exger.2006.01.015

    Article  PubMed  CAS  Google Scholar 

  71. Canudas AM, Gutierrez-Cuesta J, Rodríguez MI et al (2005) Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech Ageing Dev 126:1300–1304. doi:10.1016/j.mad.2005.07.008

    Article  PubMed  CAS  Google Scholar 

  72. Rebrin I, Sohal RS (2004) Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp Gerontol 39:1513–1519. doi:10.1016/j.exger.2004.08.014

    Article  PubMed  CAS  Google Scholar 

  73. Butterfield DA, Howard BJ, Yatin S et al (1997) Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-α-phenylnitrone. Proc Natl Acad Sci USA 94:674–678. doi:10.1073/pnas.94.2.674

    Article  PubMed  CAS  Google Scholar 

  74. Butterfield DA (2002) Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s brain. A review. Free Radic Res 36:1307–1313. doi:10.1080/1071576021000049890

    Article  PubMed  CAS  Google Scholar 

  75. Poon HF, Joshi G, Sultana R et al (2004) Antisense directed at the Aβ region of APP decreases brain oxidative markers in aged senescence accelerated mice. Brain Res 1018:86–89. doi:10.1016/j.brainres.2004.05.048

    Article  PubMed  CAS  Google Scholar 

  76. Farr SA, Poon HF, Dogrukol-Ak D et al (2003) The antioxidants α-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84:1173–1183. doi:10.1046/j.1471-4159.2003.01580.x

    Article  PubMed  CAS  Google Scholar 

  77. Tomobe K, Okuma Y, Nomura Y (2007) Impairment of CREB phosphorylation in the hippocampal CA1 region of the senescence-accelerated mouse (SAM) P8. Brain Res 1141:214–217. doi:10.1016/j.brainres.2006.08.026

    Article  PubMed  CAS  Google Scholar 

  78. Akaishi T, Nakazawa K, Sato K et al (2004) Modulation of voltage-gated Ca2+current by 4-hydroxynonenal in dentate granule cells. Biol Pharm Bull 27:174–179. doi:10.1248/bpb.27.174

    Article  PubMed  CAS  Google Scholar 

  79. Ho N, Liauw JA, Blaeser F et al (2000) Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci 20:6459–6472

    PubMed  CAS  Google Scholar 

  80. Yamada S, Uchida S, Ohkura T et al (1996) Alterations in calcium antagonist receptors and calcuium content in senescent brain and attenuation by nimodipine and nicardipine. J Pharmacol Exp Ther 277:721–727

    PubMed  CAS  Google Scholar 

  81. Nakahara H, Kanno T, Inai Y et al (1998) Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Free Radic Biol Med 24:85–92. doi:10.1016/S0891-5849(97)00164-0

    Article  PubMed  CAS  Google Scholar 

  82. Nishikawa T, Takahashi JA, Fujibayashi Y et al (1998) An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Neurosci Lett 254:69–72. doi:10.1016/S0304-3940(98)00646-6

    Article  PubMed  CAS  Google Scholar 

  83. Fujibayashi Y, Yamamoto S, Waki A et al (1998) Increased mitochondrial DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress bain. Neurosci Lett 254:109–112. doi:10.1016/S0304-3940(98)00667-3

    Article  PubMed  CAS  Google Scholar 

  84. Xu J, Shi C, Li Q et al (2007) Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice. J Bioenerg Biomembr 39:195–202. doi:10.1007/s10863-007-9077-y

    Article  PubMed  CAS  Google Scholar 

  85. Ueno M, Akiguchi I, Yagi H et al (1993) Age-related changes in barrier function in mouse brain I. Accelerated age-related increase of brain transfer of serum albumin in accelerated senescence prone SAM-P/8 mice with deficits in learning and memory. Arch Gerontol Geriatr 16:233–248. doi:10.1016/0167-4943(93)90035-G

    Article  PubMed  CAS  Google Scholar 

  86. Ueno M, Dobrogowska DH, Vorbrodt AW et al (1996) Immunocytochemical evaluation of the blood-brain barrier to endogenous albumin in the olfactory bulb and pons of senescence-accelerated mice (SAM). Histochem Cell Biol 105:203–212. doi:10.1007/BF01462293

    Article  PubMed  CAS  Google Scholar 

  87. Ueno M, Akiguchi I, Hosokawa M et al (1997) Age-related changes in the brain transfer of blood-borne horseradish peroxidase in the hippocampus of senescence-accelerated mouse. Acta Neuropathol 93:233–240. doi:10.1007/s004010050609

    Article  PubMed  CAS  Google Scholar 

  88. Banks WA, Farr SA, Morley JE (2000) Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J Gerontol Biol Sci 55A:B601–B606

    CAS  Google Scholar 

  89. Pelegrí C, Canudas AM, Valle JD et al (2007) Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence. Mech Ageing Dev 128:522–528. doi:10.1016/j.mad.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  90. Katsuki H, Ishihara K, Shimada A et al (1990) Age-related deterioration of long term potentiation in the CA3 and CA1 regions of hippocampal slices from the senescence-accelerated mouse. Arch Gerontol Geriatr 11:77–83. doi:10.1016/0167-4943(90)90058-E

    Article  PubMed  CAS  Google Scholar 

  91. Yang S, Qiao H, Wen L et al (2005) d-Serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slices from aged senescence-accelerated mouse prone/8. Neurosci Lett 379:7–12. doi:10.1016/j.neulet.2004.12.033

    Article  PubMed  CAS  Google Scholar 

  92. Inada K, Yokoi I, Kabuto H et al (1996) Age-related increase in nitric oxide synthase activity in senescence accelerated mouse brain and the effect of long-term administration of superoxide radical scavenger. Mech Ageing Dev 89:95–102. doi:10.1016/0047-6374(96)01743-5

    Article  PubMed  CAS  Google Scholar 

  93. Howard DJ, Yatin S, Hensley K et al (1996) Prevention of hyperoxia–induced alterations in synaptosomal membrane-associated proteins by N-tert butyl-alpha-phenylnitrone and 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-1-oxyl (Tempol). J Neurochem 67:2045–2050

    Article  PubMed  CAS  Google Scholar 

  94. Poon HF, Castegna A, Farr SA et al (2004) Quantitative proteomics analysis of spectfic protein expression and oxidative modification in aged senescence-accelerated–prone 8 mice brain. Neuroscience 126:915–926. doi:10.1016/j.neuroscience.2004.04.046

    Article  PubMed  CAS  Google Scholar 

  95. Poon HF, Farr SA, Banks WA et al (2005) Proteomic identification of less oxidized proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at Aβ region of amyloid precursor protein. Brain Res Mol Brain Res 138(1):8–16. doi:10.1016/j.molbrainres.2005.02.020

    Article  PubMed  CAS  Google Scholar 

  96. Kaisho Y, Miyamoto M, Shiho O et al (1994) Expression of neurotropine genes in the brain of senescence-accelerated mouse (SAM) during postnatal development. Brain Res 647:139–144. doi:10.1016/0006-8993(94)91408-7

    Article  PubMed  CAS  Google Scholar 

  97. Kumar VB, Vyas K, Buddhiraju M et al (1999) Changes in membrane fatty acids and delta-9 desaturase in senescence accelerated (SAMP8) mouse hippocampus with aging. Life Sci 65:1657–1662. doi:10.1016/S0024-3205(99)00414-2

    Article  PubMed  CAS  Google Scholar 

  98. Wei X, Zhang Y, Zhou J (1999) Alzheimer’s disease-related gene expression in the brain of senescence accelerated mouse. Neurosci Lett 268:139–142. doi:10.1016/S0304-3940(99)00396-1

    Article  PubMed  CAS  Google Scholar 

  99. Kumar VB, Franko MW, Farr SA et al (2000) Identification of age-dependent changes in expression of senescence accelerated mouse (SAMP8) hippocampal proteins by expression array analysis. Biochem Biophys Res Commun 272:657–661. doi:10.1006/bbrc.2000.2719

    Article  PubMed  CAS  Google Scholar 

  100. Miyazaki H, Okuma Y, Nomura J et al (2003) Age-related alterations in the expression of glial cell line-derived neurotrophic factor in the senescence-accelerated mouse brain. J Pharmacol Sci 92:28–34. doi:10.1254/jphs.92.28

    Article  PubMed  CAS  Google Scholar 

  101. Cheng X-R, Zhou W-X, Zhang Y-X et al (2007) Differential gene expression profiles in the hippocampus of senescence-accelerated mouse. Neurobiol Aging 28:497–506. doi:10.1016/j.neurobiolaging.2006.02.004

    Article  PubMed  CAS  Google Scholar 

  102. Takahashi R, Goto S (2004) Altered gene expression in the brain of senescence accelerated mouse SAMP8. Int Congr Ser 1260:85–90. doi:10.1016/S0531-5131(03)01606-6

    Article  CAS  Google Scholar 

  103. Butterfield DA, Poon HF (2005) The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol 40(10):774–783. doi:10.1016/j.exger.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  104. Carter TA, Greenhal JA, Yoshida S et al (2005) Mechanisms of aging in senescence-accelerated mice. Genome Biol 6(6):R48. doi:10.1186/gb-2005-6-6-r48

    Article  PubMed  CAS  Google Scholar 

  105. Tomobe K, Isobe M, Sawada M et al (2004) Genetic study of learning and memory deficits in SAMP8 mice. Int Congr Ser 1260:353–356. doi:10.1016/S0531-5131(03)01680-7

    Article  CAS  Google Scholar 

  106. Shimada A, Ohta A, Akiguchi I et al (1992) Inbred SAM-P/10 as a mouse model of spontaneous, inherited brain atrophy. J Neuropathol Exp Neurol 51(4):440–450. doi:10.1097/00005072-199207000-00006

    Article  PubMed  CAS  Google Scholar 

  107. Shimada A, Ohta A, Akiguchi I et al (1993) Age-related deterioration on conditional avoidance task in the SAM-P/10 mouse, an animal model of spontaneous brain atrophy. Brain Res 608:266–272. doi:10.1016/0006-8993(93)91467-7

    Article  PubMed  CAS  Google Scholar 

  108. Okuma Y, Murayama T, Tha KK et al (2000) Learning deficiency and alterations in acetylcholine receptors and protein kinase C in the brain of senescence-accelerated mouse (SAM)-P10. Mech Ageing Dev 114:191–199. doi:10.1016/S0047-6374(00)00103-2

    Article  PubMed  CAS  Google Scholar 

  109. Takahashi H, Sakamoto J, Ohta H et al (2004) Age-related decrease in spontaneity observed in senescence-accelerated mice (SAMP10) and the involvement of the dopaminergic system in behavioral disorders. Int Congr Ser 1260:309–314. doi:10.1016/S0531-5131(03)01671-6

    Article  CAS  Google Scholar 

  110. Shimada A, Hosokawa M, Ohta A et al (1994) Localization of atrophy-prone areas in the aging mouse brain: comparison between the brain atrophy model SAM-P/10 and the normal control SAN-R/1. Neuroscience 59:859–869. doi:10.1016/0306-4522(94)90290-9

    Article  PubMed  CAS  Google Scholar 

  111. Shimada A, Keino H, Sato M et al (2002) Age-related progressive neuronal DNA damage associated with cerebral degeneration in a mouse model of accelerated senescence. J Gerontol Biol Sci 57A:B415–B421

    Google Scholar 

  112. Borras D, Pumarola M, Ferrer I (2000) Neuronal nuclear DNA fragmentation in the aged canine brain: apotosis or nuclear DNA fragility? Acta Neuropathol 99:402–408. doi:10.1007/s004010051142

    Article  PubMed  CAS  Google Scholar 

  113. Stadelmann C, Bruck W, Bancher C et al (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apotosis. J Neuropathol Exp Neurol 57:456–464

    Article  PubMed  CAS  Google Scholar 

  114. Shimada A, Keino H, Satoh M et al (2003) Age-related loss of synapses in the frontal cortex of SAMP10 mouse: a model of cerebral degeneration. Synapse 48:198–204. doi:10.1002/syn.10209

    Article  PubMed  CAS  Google Scholar 

  115. Shimada A, Tsuzuki M, Keino H et al (2006) Apical vulnerability to dendritic retraction in prefrontal neurons of aging SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol 32:1–14. doi:10.1111/j.1365-2990.2006.00632.x

    Article  PubMed  CAS  Google Scholar 

  116. Shimada A, Keino H, Chiba Y et al (2008) Limbic structures are prone to age-related impairments in proteasome activity and neuronal ubiquitinated inclusions in SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol 34:33–51

    PubMed  CAS  Google Scholar 

  117. Kumagai N, Chiba Y, Hosono M et al (2007) Involvement of pro-inflammatory cytokines and microglia in an age-associated neurodegeneration model, the SAMP10 mouse. Brain Res 1185:75–85. doi:10.1016/j.brainres.2007.09.021

    Article  PubMed  CAS  Google Scholar 

  118. Kim SS, Kang MS, Choi YM et al (1997) Sphingomyelinase activity is enhanced in cerebral cortex of senescence-accelerated mouse-P/10 with advancing age. Biochem Biophys Res Commun 237:583–587. doi:10.1006/bbrc.1997.7133

    Article  PubMed  CAS  Google Scholar 

  119. Saito T, Takahashi K, Nakagawa N et al (2000) Deficiencies of hippocampal Zn and ZnT3 accelerate brain aging of mice. Biochem Biophys Res Commun 279:505–511. doi:10.1006/bbrc.2000.3946

    Article  PubMed  CAS  Google Scholar 

  120. Onodera Y, Watanabe R, Tha KK et al (2000) Depressive behavior and alterations in receptors for dopamine and 5-hydroxytryptamine in the brain of the senescence-accelerated mouse (SAM)-P10. Jpn J Pharmacol 83:312–318. doi:10.1254/jjp.83.312

    Article  PubMed  CAS  Google Scholar 

  121. Numata T, Saito T, Maekawa K et al (2002) Bcl-2 linked apotosis due to increase in NO synthase in brain of SAMP10. Biochem Biophys Res Commun 297:517–522. doi:10.1016/S0006-291X(02)02155-1

    Article  PubMed  CAS  Google Scholar 

  122. Nakanishi H, Miyazaki M, Takai N et al (1998) Hyperexcitability of amygdale neurons of senescence-accelareted mouse revealed by electrical and optical recordings in an in vitro slice preparation. Brain Res 812:142–149. doi:10.1016/S0006-8993(98)00968-8

    Article  PubMed  CAS  Google Scholar 

  123. Powers DC, Morley JE, Flood JF (1992) Age-related changes in LFA-1 expression, cell adhesion, and PHA-induced proliferation by lymphocytes from senescence-accelerated mouse (SAM)-P/8 and SAM-R/1 substrains. Cell Immunol 141:444–456. doi:10.1016/0008-8749(92)90162-I

    Article  PubMed  CAS  Google Scholar 

  124. Abe Y, Yuasa M, Kajiwara Y et al (1994) Defects of immune cells in the senescence-accelerated mouse: a model for learning and memory deficits in the aged. Cell Immunol 157:59–69. doi:10.1006/cimm.1994.1205

    Article  PubMed  CAS  Google Scholar 

  125. Leverson J, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurobiol 6:108–118. doi:10.1038/nrn1604

    Article  CAS  Google Scholar 

  126. Fischer A, Sananbenesi F, Wang X et al (2007) Recovery of learning and memory is associated with chromatin remodeling. Nature 447:178–182. doi:10.1038/nature05772

    Article  PubMed  CAS  Google Scholar 

  127. Chen Y, Zhu J, Lum PY et al (2008) Variation in DNA elucidate molecular networks that cause disease. Nature 452:429–435. doi:10.1038/nature06757

    Article  PubMed  CAS  Google Scholar 

  128. Emilsson V, Thorleifsson G, Zhang B et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428. doi:10.1038/nature06758

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the invitation by Prof. Jiankang Liu and Prof. Midori Hiramatsu to review the special issues dedicated to Emeritus Prof. Akitane Mori, giving the author a valuable chance to extensively review the SAM research from 1981 to 2008. Further, the author greatly appreciates the contribution of Prof. Akitane Mori and his colleagues to SAM research, particularly on the oxidative stress.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Takeda.

Additional information

Special issue article in honour of Dr. Akitane Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, T. Senescence-Accelerated Mouse (SAM) with Special References to Neurodegeneration Models, SAMP8 and SAMP10 Mice. Neurochem Res 34, 639–659 (2009). https://doi.org/10.1007/s11064-009-9922-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9922-y

Keywords

Navigation