Skip to main content

Advertisement

Log in

R-Deprenyl: Pharmacological Spectrum of its Activity

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Deprenyl has been discovered by Knoll and co-workers. The R-enantiomer of deprenyl (selegiline) is a selective and irreversible inhibitor of the B-isoform of monoamine oxidase (MAO-B) enzyme. Due to its dopamine potentiating and possible neuroprotective properties it has an established role in the treatment of parkinsonian patients. By inhibiting MAO-B enzyme, R-deprenyl decreases the formation of hydrogen peroxide, alleviating the oxidative stress also reduced by increased expression of antioxidant enzymes (superoxide dismutases and catalase) reported during chronic treatment. It was shown to prevent the detrimental effects of neurotoxins like MPTP and DSP-4. R-Deprenyl elicits neuroprotective and neuronal rescue activities in concentrations too low to inhibit MAO-B. It is extensively metabolized and some of the metabolites possess pharmacological activities, thus their contribution to neuroprotective properties was also suggested. The recently identified deprenyl-N-oxide is extensively studied in our laboratory. Effects other than neuroprotection, like influencing cell adhesion and proliferation cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adolfsson R, Gottfries CG, Oreland L et al (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27:1029–1034

    Article  CAS  PubMed  Google Scholar 

  2. Azzaro AJ, Ziemniak J, Kemper E et al (2007) Pharmacokinetics and absolute bioavailability of selegiline following treatment of healthy subjects with the selegiline transdermal system (6 mg/24 h): a comparison with oral selegiline capsules. J Clin Pharmacol 47:1256–1267

    Article  CAS  PubMed  Google Scholar 

  3. Bach MV, Coutts RT, Baker GB (2000) Metabolism of N,N-dialkylated amphetamines, including deprenyl, by CYP2D6 expressed in a human cell line. Xenobiotica 30:297–306

    Article  CAS  PubMed  Google Scholar 

  4. Barrett JS, Szego P, Rohatagi S et al (1996) Absorption and presystemic metabolism of selegiline hydrochloride at different regions in the gastrointestinal tract in healthy males. Pharm Res 13:1535–1540

    Article  CAS  PubMed  Google Scholar 

  5. Barrett JS, Rohatagi S, DeWitt KE et al (1996) The effect of dosing regimen and food on the bioavailability of the extensively metabolized, highly variable drug Eldepryl(R) (selegiline hydrochloride). Am J Ther 3:298–313

    Article  PubMed  Google Scholar 

  6. Barrett JS, Hochadel TJ, Morales RJ et al (1996) Pharmacokinetics and safety of a selegiline transdermal system relative to single-dose oral administration in the elderly. Am J Ther 3:688–698

    Article  PubMed  Google Scholar 

  7. Barrett JS, DiSanto AR, Thomford PJ et al (1997) Toxicokinetic evaluation of a selegiline transdermal system in the dog. Biopharm Drug Dispos 18:165–184

    Article  CAS  PubMed  Google Scholar 

  8. Birkmayer W, Riederer P, Youdim MB et al (1975) The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, Deprenil. J Neural Transm 36:303–326

    Article  CAS  PubMed  Google Scholar 

  9. Birkmayer W, Riederer P, Ambrozi L et al (1977) Implications of combined treatment with ‘Madopar’ and L-deprenil in Parkinson’s disease. A long-term study. Lancet 1:439–443

    Article  CAS  PubMed  Google Scholar 

  10. Birkmayer W, Knoll J, Riederer P et al (1983) (−)-Deprenyl leads to prolongation of L-dopa efficacy in Parkinson’s disease. Mod Probl Pharmacopsychiatry 19:170–176

    CAS  PubMed  Google Scholar 

  11. Birkmayer W, Knoll J, Riederer P et al (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease: a longterm study. J. Neural Transm 64:113–127

    Article  CAS  PubMed  Google Scholar 

  12. Blackwell B, Marley E, Price J et al (1967) Hypertensive interactions between monoamine oxidase inhibitors and foodstuffs. Br J Psychiatry 113:349–365

    Article  CAS  PubMed  Google Scholar 

  13. Carrillo MC, Kanai S, Nokubo M et al (1991) (−)-Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 48:517–521

    Article  CAS  PubMed  Google Scholar 

  14. Clarke A, Brewer F, Johnson ES et al (2003) A new formulation of selegiline: improved bioavailability and selectivity for MAO-B inhibition. J Neural Transm 110:1241–1255

    Article  CAS  PubMed  Google Scholar 

  15. Clement B, Behrens D, Moller W et al (2000) Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes. Chem Res Toxicol 13:1037–1045

    Article  CAS  PubMed  Google Scholar 

  16. Cohen G, Spina MB (1989) Deprenyl supresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 26:689–690

    Article  CAS  PubMed  Google Scholar 

  17. Denney RM, Fritz RR, Patel NT et al (1983) Use of a monoclonal antibody for comparative studies of monoamine oxidase B in mitochondrial extracts of human brain and peripheral tissues. Mol Pharmacol 24:60–68

    CAS  PubMed  Google Scholar 

  18. Dragoni S, Bellik L, Frosini M et al (2003) L-Deprenyl metabolism by the cytochrome P450 system in monkey (Cercopithecus aethiops) liver microsomes. Xenobiotica 33:181–195

    Article  CAS  PubMed  Google Scholar 

  19. Ekblom J, Oreland L, Chen K et al (1998) Is there a “non-MAO” macromolecular target for L-deprenyl?: studies on MAOB mutant mice. Life Sci 63:PL181–PL186

    Article  CAS  PubMed  Google Scholar 

  20. Fang J, Zuo DM, Yu PH (1995) Lack of protective effect of R(−)-deprenyl on programmed cell death of mouse thymocytes induced by dexamethasone. Life Sci 57:15–22

    Article  CAS  PubMed  Google Scholar 

  21. Feiger AD, Rickels K, Rynn MA et al (2006) Selegiline transdermal system for the treatment of major depressive disorder: an 8 week, double-blind, placebo-controlled, flexible-dose titration trial. J Clin Psychiatry 67:1354–1361

    Article  CAS  PubMed  Google Scholar 

  22. Fowler JS, MacGregor RR, Wolf AP et al (1987) Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 235:481–485

    Article  CAS  PubMed  Google Scholar 

  23. Gaál J, Szebeni G, Székács G et al (2000) Transdermal formulations of deprenyl: guinea pig and pig models. Neurobiology (Bp) 8:143–166

    Google Scholar 

  24. Grace JM, Kinter MT, Macdonald TL (1994) Atypical metabolism of deprenyl and its enantiomer, (S)-(+)-N, alpha-dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6. Chem Res Toxicol 7:286–290

    Article  CAS  PubMed  Google Scholar 

  25. Haberle D, Szökő É, Magyar K (2002) The influence of metabolism on the MAO-B inhibitory potency of selegiline. Curr Med Chem 9:47–51

    CAS  PubMed  Google Scholar 

  26. Hadley MR, Svajdlenka E, Damani LA et al (1994) Species variability in the stereoselective N-oxidation of pargyline. Chirality 6:91–97

    Article  CAS  PubMed  Google Scholar 

  27. Hadley MR, Gabriac SD, Hutt AJ (1999) Resolution of enantiomeric N-oxides by capillary electrophoresis using cyclodextrins as chiral selectors. Chirality 11:409–415

    Article  CAS  Google Scholar 

  28. Heinonen EH, Myllyla V, Sotaniemi K et al (1989) Pharmacokinetics and metabolism of selegiline. Acta Neurol Scand Suppl 126:93–99

    CAS  PubMed  Google Scholar 

  29. Heinonen EH, Anttila MI, Lammintausta RA (1994) Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin Pharmacol Ther 56:742–749

    Article  CAS  PubMed  Google Scholar 

  30. Inoue O, Axelsson S, Lundqvist H et al (1990) Effect of reserpine on the brain uptake of carbon 11 methamphetamine and its N-propagyl derivative, deprenyl. Eur J Nucl Med 17:121–126

    Article  CAS  PubMed  Google Scholar 

  31. Jenei V, Zor K, Magyar K et al (2005) Increased cell-cell adhesion, a novel effect of R-(−)-deprenyl. J Neural Transm 112:1433–1445

    Article  CAS  PubMed  Google Scholar 

  32. Jossan SS, Dargy R, Gillberg PG et al (1989) Localization of monoamine oxidase-B in human-brain by autoradiographical use of C-11-labelled L-deprenyl. J Neural Transm 77:55–64

    Article  CAS  PubMed  Google Scholar 

  33. Kalász H, Kerecsen L, Knoll J et al (1990) Chromatographic studies on the binding, action and metabolism of (−)-deprenyl. J Chromatogr 499:589–599

    Article  PubMed  Google Scholar 

  34. Kalász H, Bartók T, Szökő É et al (1999) Analysis of deprenyl metabolites in the rat brain using HPLC-ES-MS. Curr Med Chem 6:271–278

    PubMed  Google Scholar 

  35. Katagi M, Tatsuno M, Miki A et al (2001) Simultaneous determination of selegiline-N-oxide, a new indicator for selegiline administration, and other metabolites in urine by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 759:125–133

    Article  CAS  PubMed  Google Scholar 

  36. Katagi M, Tatsuno M, Tsutsumi H et al (2002) Urinary excretion of selegiline N-oxide, a new indicator for selegiline administration in man. Xenobiotica 32:823–831

    Article  CAS  PubMed  Google Scholar 

  37. Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5:393–408

    CAS  PubMed  Google Scholar 

  38. Knoll J, Ecseri Z, Kelemen K et al (1965) Phenylisopropylmethylpropinylamine (E-250), a new spectrum psychic energizer. Arch Int Pharmacodyn Ther 155:154–164

    CAS  PubMed  Google Scholar 

  39. Knoll J, Vizi ES, Somogyi G (1968) Phenylisopropylpropanylamine (E-250), a monoamine oxidase inhibitoe antagonizing the effects of tyramine. Arzneimittelforschung 18:109–112

    CAS  Google Scholar 

  40. Konradi C, Svoma E, Jellinger K et al (1988) Topographic immunocytochemical mapping of monoamine oxidase-A, monoamine oxidase-B and tyrosine hydroxylase in human post mortem brain stem. Neuroscience 26:791–802

    Article  CAS  PubMed  Google Scholar 

  41. Lengyel J, Magyar K, Hollósi I et al (1997) Urinary excretion of deprenyl metabolites. J Chromatogr A 762:321–326

    Article  CAS  PubMed  Google Scholar 

  42. Lévai F, Fejer E, Szeleczky G et al (2004) In vitro formation of selegiline-N-oxide as a metabolite of selegiline in human, hamster, mouse, rat, guinea-pig, rabbit and dog. Eur J Drug Metab Pharmacokinet 29:169–178

    Article  PubMed  Google Scholar 

  43. Magyar K (1994) Behaviour of (−)-deprenyl and its analogues. J Neural Transm Suppl 41:167–175

    CAS  PubMed  Google Scholar 

  44. Magyar K, Szende B (2000) The neuroprotective and neuronal rescue effect of (−)-deprenyl. In: Cameron RG, Feuer G (eds) Handbook Exp. Pharm. Springer, Heidelberg, pp 457–472

    Google Scholar 

  45. Magyar K, Szende B (2004) (−)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotoxicology 25:233–242

    Article  CAS  PubMed  Google Scholar 

  46. Magyar K, Szűts T (1982) The fate of (−)-deprenyl in the body—Preclinical studies. In: Szebeni R (eds) Proceedings of the international symposium on (−)-deprenyl, Jumex. Chinoin, Budapest, pp 25–31

  47. Magyar K, Tóthfalusi L (1984) Pharmacokinetic aspects of deprenyl effects. Pol J Pharmacol Pharm 36:373–384

    CAS  PubMed  Google Scholar 

  48. Magyar K, Vizi ES, Ecseri Z et al (1967) Comparative pharmacological analysis of the optical isomers of phenyl-isopropyl-methyl-propinylamine (E-250). Acta Physiol Acad Sci Hung 32:377–387

    CAS  PubMed  Google Scholar 

  49. Magyar K, Lengyel J, Szatmári I et al (1995) The distribution of orally administered (−)-deprenyl-propynyl-14C and (−)-deprenyl-phenyl-3H in rat brain. Prog Brain Res 106:143–153

    Article  CAS  PubMed  Google Scholar 

  50. Magyar K, Szende B, Lengyel J et al (1996) The pharmacology of B-type selective monoamine oxidase inhibitors; milestones in (−)-deprenyl research. J Neural Transm Suppl 48:29–43

    CAS  PubMed  Google Scholar 

  51. Magyar K, Szende B, Lengyel J et al (1998) The neuroprotective and neuronal rescue effects of (−)-deprenyl. J Neural Transm Suppl 52:109–123

    CAS  PubMed  Google Scholar 

  52. Magyar K, Pálfi M, Tábi T et al (2004) Pharmacological aspects of (−)-deprenyl. Curr Med Chem 11:2017–2031

    CAS  PubMed  Google Scholar 

  53. Mahmood I (1997) Clinical pharmacokinetics and pharmacodynamics of selegiline. An update. Clin Pharmacokinet 33:91–102

    Article  CAS  PubMed  Google Scholar 

  54. Mahmood I, Peters DK, Mason WD (1994) The pharmacokinetics and absolute bioavailability of selegiline in the dog. Biopharm Drug Dispos 15:653–664

    Article  CAS  PubMed  Google Scholar 

  55. Mahmood I, Neau SH, Mason WD (1994) An enzymatic assay for the MAO-B inhibitor selegiline in plasma. J Pharm Biomed Anal 12:895–899

    Article  CAS  PubMed  Google Scholar 

  56. Mahmood I, Marinac JS, Willsie S et al (1995) Pharmacokinetics and relative bioavailability of selegiline in healthy volunteers. Biopharm Drug Dispos 16:535–545

    Article  CAS  PubMed  Google Scholar 

  57. Mascher HJ, Kikuta C, Millendorfer A et al (1997) Pharmacokinetics and bioequivalence of the main metabolites of selegiline: desmethylselegiline, methamphetamine and amphetamine after oral administration of selegiline. Int J Clin Pharmacol Ther 35:9–13

    CAS  PubMed  Google Scholar 

  58. Melega WP, Cho AK, Schmitz D et al (1999) L-methamphetamine pharmacokinetics and pharmacodynamics for assessment of in vivo deprenyl-derived l-methamphetamine. J Pharmacol Exp Ther 288:752–758

    CAS  PubMed  Google Scholar 

  59. Milgram NW, Racine RJ, Nellis P et al (1990) Maintenance on L-deprenyl prolongs life in aged male rats. Life Sci 47:415–420

    Article  CAS  PubMed  Google Scholar 

  60. Müller FO, Schall R, Hundt HK et al (1996) Bioavailability of two selegiline hydrochloride tablet products. Arzneimittelforschung 46:1037–1040

    PubMed  Google Scholar 

  61. Natoff IL (1964) Cheese and monoamine oxidase inhibitors. Interactions in anaesthetised cats. Lancet 1:532–533

    Article  CAS  PubMed  Google Scholar 

  62. Philips SR (1981) Amphetamine, p-hydroxyamphetamine and beta-phenylethylamine in mouse-brain and urine after (−)- and (+)-deprenyl administration. J Pharm Pharmacol 33:739–741

    CAS  PubMed  Google Scholar 

  63. Poston KL, Waters C (2007) Zydis selegiline in the management of Parkinson’s disease. Expert Opin Pharmacother 8:2615–2624

    Article  CAS  PubMed  Google Scholar 

  64. Qin F, Shite J, Mao W et al (2003) Selegiline attenuates cardiac oxidative stress and apoptosis in heart failure: association with improvement of cardiac function. Eur J Pharmacol 461:149–158

    Article  CAS  PubMed  Google Scholar 

  65. Reed JC (1996) Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Inst Mitt Oct(97):72–100

    Google Scholar 

  66. Reynolds GP, Riederer P, Sandler M et al (1978) Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (−)deprenyl administration. J Neural Transm 43:271–277

    Article  CAS  PubMed  Google Scholar 

  67. Reynolds GP, Elsworth JD, Blau K et al (1978) Deprenyl is metabolized to methamphetamine and amphetamine in man. Br J Clin Pharmacol 6:542–544

    CAS  PubMed  Google Scholar 

  68. Riederer P, Youdim MB (1986) Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with L-deprenyl. J Neurochem 46:1359–1365

    Article  CAS  PubMed  Google Scholar 

  69. Rohatagi S, Barrett JS, DeWitt KE et al (1997) Integrated pharmacokinetic and metabolic modeling of selegiline and metabolites after transdermal administration. Biopharm Drug Dispos 18:567–584

    Article  CAS  PubMed  Google Scholar 

  70. Rohatagi S, Barrett JS, McDonald LJ et al (1997) Selegiline percutaneous absorption in various species and metabolism by human skin. Pharm Res 14:50–55

    Article  CAS  PubMed  Google Scholar 

  71. Schachter M, Marsden CD, Parkes JD et al (1980) Deprenyl in the management of response fluctuations in patients with Parkinson’s disease on levodopa. J Neurol Neurosurg Psychiatry 43:1016–1021

    Article  CAS  PubMed  Google Scholar 

  72. Seymour CB, Mothersill C, Mooney R et al (2003) Monoamine oxidase inhibitors l-deprenyl and clorgyline protect nonmalignant human cells from ionising radiation and chemotherapy toxicity. Br J Cancer 89:1979–1986

    Article  CAS  PubMed  Google Scholar 

  73. Shin HS (1997) Metabolism of selegiline in humans. Identification, excretion, and stereochemistry of urine metabolites. Drug Metab Dispos 25:657–662

    CAS  PubMed  Google Scholar 

  74. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  CAS  PubMed  Google Scholar 

  75. Szebeni G, Lengyel J, Székács G et al (1995) Gas chromatographic procedure for simultaneous determination of selegiline metabolites, amphetamine, methamphetamine and demethyl-deprenyl in pig plasma. Acta Physiol Hung 83:135–141

    CAS  PubMed  Google Scholar 

  76. Szende B (2004) Cell proliferation and cell death in relation to dose of various chemical substances. In: Török T, Klebovich I (eds) Monoamine oxidase inhibitors and their role in neurotransmission. Medicina, Budapest, pp 133–140

    Google Scholar 

  77. Szende B, Magyar K, Szegedi Z (2000) Apoptotic and antiapoptotic effect of (−)-deprenyl and (−)-desmethyl-deprenyl on human cell lines. Neurobiology (Bp) 8:249–255

    CAS  Google Scholar 

  78. Szende B, Bokonyi G, Bocsi J et al (2001) Anti-apoptotic and apoptotic action of (−)-deprenyl and its metabolites. J Neural Transm 108:25–33

    Article  CAS  PubMed  Google Scholar 

  79. Szökő É, Magyar K (1995) Chiral separation of deprenyl and its major metabolites using cyclodextrine-modified capillary zone electrophoresis. J Chromatogr A 709:157–162

    Article  Google Scholar 

  80. Szökő É, Magyar K (1996) Enantiomer identification of major metabolites of (−)-deprenyl in rat urine by capillary electrophoresis. Int J Pharm Advances 1:320–328

    Google Scholar 

  81. Szökő É, Kalász H, Magyar K (1999) Biotransformation of deprenyl enantiomers. Eur J Drug Metab Pharmacokinet 24:315–319

    Article  PubMed  Google Scholar 

  82. Szökő É, Kalász H, Magyar K (1999) Metabolic transformation of deprenyl enantiomers in rats. Neurobiology (Bp) 7:247–254

    Google Scholar 

  83. Szökő É, Tábi T, Borbás T et al (2004) Assessment of the N-oxidation of deprenyl, methamphetamine, and amphetamine enantiomers by chiral capillary electrophoresis: an in vitro metabolism study. Electrophoresis 25:2866–2875

    Article  PubMed  CAS  Google Scholar 

  84. Szökő É, Tábi T, Halász AS et al (2004) Chiral characterization and quantification of deprenyl-N-oxide and other deprenyl metabolites in rat urine by capillary electrophoresis. Chromatographia 60:S245–S251

    Article  CAS  Google Scholar 

  85. Taavitsainen P, Anttila M, Nyman L et al (2000) Selegiline metabolism and cytochrome P450 enzymes: in vitro study in human liver microsomes. Pharmacol Toxicol 86:215–221

    Article  CAS  PubMed  Google Scholar 

  86. Tábi T, Magyar K, Szökő É (2003) Chiral characterization of deprenyl-N-oxide and other deprenyl metabolites by capillary electrophoresis using a dual cyclodextrin system in rat urine. Electrophoresis 24:2665–2673

    Article  PubMed  CAS  Google Scholar 

  87. Tarjányi Z, Kalász H, Szebeni G et al (1998) Gas-chromatographic study on the stereoselectivity of deprenyl metabolism. J Pharm Biomed Anal 17:725–731

    Article  PubMed  Google Scholar 

  88. Tatton WG, Chalmers-Redman RM (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (−)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47:S171–S183

    CAS  PubMed  Google Scholar 

  89. Tatton WG, Ju WY, Holland DP et al (1994) (−)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63:1572–1575

    Article  CAS  PubMed  Google Scholar 

  90. Tatton WG, Wadia JS, Ju WY et al (1996) (−)-Deprenyl reduces neuronal apoptosis and facilitates neuronal outgrowth by altering protein synthesis without inhibiting monoamine oxidase. J Neural Transm Suppl 48:45–59

    CAS  PubMed  Google Scholar 

  91. Tatton WG, Chalmers-Redman RM, Elstner M et al (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J Neural Transm Suppl:77–100

    Google Scholar 

  92. Tatton WG, Chalmers-Redman RM, Ju WJ et al (2002) Propargylamines induce antiapoptotic new protein synthesis in serum-and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301:753–764

    Article  CAS  PubMed  Google Scholar 

  93. Tekes K, Tóthfalusi L, Gaál J et al (1988) Effect of MAO inhibitors on the uptake and metabolism of dopamine in rat and human brain. Pol J Pharmacol Pharm 40:653–658

    CAS  PubMed  Google Scholar 

  94. Tharakan B, Whaley JG, Hunter FA et al (2010) (−)-Deprenyl inhibits vascular hyperpermeability after hemorrhagic shock. Shock 33:56–63

    Article  CAS  PubMed  Google Scholar 

  95. Thomas T, McLendon C, Thomas G (1998) L-deprenyl: nitric oxide production and dilation of cerebral blood vessels. Neuroreport 9:2595–2600

    Article  CAS  PubMed  Google Scholar 

  96. Thyaga Rajan S, Felten DL (2002) Modulation of neuroendocrine-immune signaling by L-deprenyl and L-desmethyldeprenyl in aging and mammary cancer. Mech Ageing Dev 123:1065–1079

    Article  CAS  Google Scholar 

  97. Thyaga Rajan S, Quadri SK (1999) L-deprenyl inhibits tumor growth, reduces serum prolactin, and suppresses brain monoamine metabolism in rats with carcinogen-induced mammary tumors. Endocrine 10:225–232

    Article  CAS  Google Scholar 

  98. Thyaga Rajan S, Meites J, Quadri SK (1995) Deprenyl reinitiates estrous cycles, reduces serum prolactin, and decreases the incidence of mammary and pituitary tumors in old acyclic rats. Endocrinology 136:1103–1110

    Article  CAS  Google Scholar 

  99. Thyaga Rajan S, Madden KS, Stevens SY et al (1999) Inhibition of tumor growth by L-deprenyl involves neural-immune interactions in rats with spontaneously developing mammary tumors. Anticancer Res 19:5023–5028

    CAS  Google Scholar 

  100. Thyaga Rajan S, Madden KS, Stevens SY et al (2000) Anti-tumor effect of L-deprenyl is associated with enhanced central and peripheral neurotransmission and immune reactivity in rats with carcinogen-induced mammary tumors. J Neuroimmunol 109:95–104

    Article  CAS  Google Scholar 

  101. Toronyi E, Hamar J, Magyar K et al (2002) Antiapoptotic effect of (−)-deprenyl in rat kidney after ischemia-reperfusion. Med Sci Monit 8:BR65–BR68

    CAS  PubMed  Google Scholar 

  102. Tsutsumi H, Katagi M, Nishikawa M et al (2004) In vitro confirmation of selegiline N-oxidation by flavin-containing monooxygenase in rat microsome using LC-ESI MS. Biol Pharm Bull 27:1572–1575

    Article  CAS  PubMed  Google Scholar 

  103. Valoti M, Fusi F, Frosini M et al (2000) Cytochrome P450-dependent N-dealkylation of L-deprenyl in C57BL mouse liver microsomes: effects of in vivo pretreatment with ethanol, phenobarbital, beta-naphthoflavone and L-deprenyl. Eur J Pharmacol 391:199–206

    Article  CAS  PubMed  Google Scholar 

  104. Wadia JS, Chalmers-Redman RM, Ju WJ et al (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (−)-deprenyl. J Neurosci 18:932–947

    CAS  PubMed  Google Scholar 

  105. Wecker L, James S, Copeland N et al (2003) Transdermal selegiline: targeted effects on monoamine oxidases in the brain. Biol Psychiatry 54:1099–1104

    Article  CAS  PubMed  Google Scholar 

  106. Whaley JG, Tharakan B, Smith B et al (2009) (−)-Deprenyl inhibits thermal injury-induced apoptotic signaling and hyperpermeability in microvascular endothelial cells. J Burn Care Res 30:1018–1027

    PubMed  Google Scholar 

  107. Wu RF, Ichikawa Y (1995) Inhibition of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine metabolic activity of porcine FAD-containing monooxygenase by selective monoamine oxidase-B inhibitors. FEBS Lett 358:145–148

    Article  PubMed  Google Scholar 

  108. Yoshida T, Yamada Y, Yamamoto T et al (1986) Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica 16:129–136

    Article  CAS  PubMed  Google Scholar 

  109. Yoshida T, Oguro T, Kuroiwa Y (1987) Hepatic and extrahepatic metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor, of amphetamines in rats: sex and strain differences. Xenobiotica 17:957–963

    Article  CAS  PubMed  Google Scholar 

  110. Youdim MB, Weinstock M (2002) Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug, rasagiline. Mech Ageing Dev 123:1081–1086

    Article  CAS  PubMed  Google Scholar 

  111. Youdim MB, Wadia A, Tatton W et al (2001) The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci 939:450–458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to join those scientists who want to express their sincere thanks to Professor Abel Lajtha for serving as an editor of the journal of Neurochemical Research for the last 35 years. Dr. Lajtha was born in Hungary. We sentence our review of deprenyl research to him, the drug which is an original Hungarian product, used for the treatment of Parkinson’s disease due to its selective irreversible inhibition on MAO-B. We would like to thank Dr. Lajtha for his personal help and keeping his eyes on the progression of deprenyl studies carried out during the last decades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Magyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magyar, K., Szende, B., Jenei, V. et al. R-Deprenyl: Pharmacological Spectrum of its Activity. Neurochem Res 35, 1922–1932 (2010). https://doi.org/10.1007/s11064-010-0238-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0238-8

Keywords

Navigation