Skip to main content

Advertisement

Log in

Thiamine and Oxidants Interact to Modify Cellular Calcium Stores

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diminished thiamine (vitamin B1) dependent processes and oxidative stress accompany Alzheimer’s disease (AD). Thiamine deficiency in animals leads to oxidative stress. These observations suggest that thiamin may act as an antioxidant. The current experiments first tested directly whether thiamin could act as an antioxidant, and then examined the physiological relevance of the antioxidant properties on oxidant sensitive, calcium dependent processes that are altered in AD. The first group of experiments examined whether thiamin could diminish reactive oxygen species (ROS) or reactive nitrogen species (RNS) produced by two very divergent paradigms. Dose response curves determined the concentrations of t-butyl-hydroperoxide (t-BHP) (ROS production) or 3-morpholinosydnonimine ((SIN-1) (RNS production) to induce oxidative stress within cells. Concentrations of thiamine that reduced the RNS in cells did not diminish the ROS. The second group of experiments tested whether thiamine alters oxidant sensitive aspects of calcium regulation including endoplasmic reticulum (ER) calcium stores and capacitative calcium entry (CCE). Thiamin diminished ER calcium considerably, but did not alter CCE. Thiamine did not alter the actions of ROS on ER calcium or CCE. On the other hand, thiamine diminished the effect of RNS on CCE. These data are consistent with thiamine diminishing the actions of the RNS, but not ROS, on physiological targets. Thus, both experimental approaches suggest that thiamine selectively alters RNS. Additional experiments are required to determine whether diminished thiamine availability promotes oxidative stress in AD or whether the oxidative stress in AD brain diminishes thiamine availability to thiamine dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BRCS:

Bombesin-releasable calcium stores

BSS:

Balanced salt solution

CCE:

Capacitative calcium entry

CPA:

Cyclopiazonic acid

[Ca2+]i :

Cytosolic free calcium concentration

DCF:

6-Carboxy-2′,7′-dichlorodihydro-fluorescein diacetate (acetoxymethyl ester)

DAF:

Diacetate (4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate)

N2O3 :

Dinitrogen trioxide

DMEM:

Dulbecco’s modified Eagle’s medium

ER:

Endoplasmic reticulum

Fura-2:

Fura-2-acetoxymethyl ester

GSNO:

S-nitrosoglutathione

GSH:

Glutathione

GSSG:

Glutathione disulfide

Gpx:

Glutathione peroxidase

GRx:

Glutathione reductase

NO:

Nitric oxide

OONO :

Peroxinitrite

PBS:

Phosphate-buffered saline

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SIN-1:

3-Morpholinosyndnonimine

t-BHP:

Tert-butyl-hydroxyperoxide

t-bu-O·:

Tert-butyloxyl

t-bu-OO·:

t-butylperoxyl

TD:

Thiamine deficiency

TSH:

Thiamine thiol

References

  1. Bettendorff L, Wirtzfeld B, Makarchikov AF, Mazzucchelli G, Frederich M et al (2007) Discovery of a natural thiamine adenine nucleotide. Nat Chem Biol 3:211–212

    Article  CAS  PubMed  Google Scholar 

  2. Meador K, Loring D, Nichols M, Zamrini E, Rivner M et al (1993) Preliminary findings of high-dose thiamine in dementia of Alzheimer’s type. J Geriatr Psychiatry Neurol 6:222–229

    CAS  PubMed  Google Scholar 

  3. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC et al (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45:836–840

    CAS  PubMed  Google Scholar 

  4. Sheu KF, Calingasan NY, Lindsay JG, Gibson GE (1998) Immunochemical characterization of the deficiency of the alpha-ketoglutarate dehydrogenase complex in thiamine-deficient rat brain. J Neurochem 70:1143–1150

    Article  CAS  PubMed  Google Scholar 

  5. Calingasan NY, Gibson GE (2000) Vascular endothelium is a site of free radical production and inflammation in areas of neuronal loss in thiamine-deficient brain. Ann N Y Acad Sci 903:353–356

    Article  CAS  PubMed  Google Scholar 

  6. Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40:493–504

    Article  CAS  PubMed  Google Scholar 

  7. Langlais PJ, Anderson G, Guo SX, Bondy SC (1997) Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis 12:137–143

    CAS  PubMed  Google Scholar 

  8. Pannunzio P, Hazell AS, Pannunzio M, Rao KV, Butterworth RF (2000) Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: an in vitro model for the study of cell death mechanisms in Wernicke’s encephalopathy. J Neurosci Res 62:286–292

    Article  CAS  PubMed  Google Scholar 

  9. Tolstykh OI, Khmelevskii IuV (1991) The role of alpha-tocopherol and thiamine in the correction of lipid peroxidation in compensatory myocardial hypertrophy. Vopr Pitan 3:38–42

    Google Scholar 

  10. Ding Q, Dimayuga E, Keller JN (2007) Oxidative damage, protein synthesis, and protein degradation in Alzheimer’s disease. Curr Alzheimer Res 4:73–79

    Article  CAS  PubMed  Google Scholar 

  11. Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105:855–870

    Article  CAS  PubMed  Google Scholar 

  12. Mastrogiacoma F, Bettendorff L, Grisar T, Kish SJ (1996) Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer’s disease. Ann Neurol 39:585–591

    Article  CAS  PubMed  Google Scholar 

  13. Thyagarajan B, Malli R, Schmidt K, Graier WF, Groschner K (2002) Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling. Br J Pharmacol 137:821–830

    Article  CAS  PubMed  Google Scholar 

  14. Huang HM, Chen HL, Xu H, Gibson GE (2005) Modification of endoplasmic reticulum Ca2+ stores by select oxidants produces changes reminiscent of those in cells from patients with Alzheimer disease. Free Radic Biol Med 39:979–989

    Article  CAS  PubMed  Google Scholar 

  15. Huang HM, Zhang H, Ou HC, Chen HL, Gibson GE (2004) Alpha-keto-beta-methyl-n-valeric acid diminishes reactive oxygen species and alters endoplasmic reticulum Ca(2+) stores. Free Radic Biol Med 37:1779–1789

    Article  CAS  PubMed  Google Scholar 

  16. Putney JW Jr, Ribeiro CM (2000) Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores. Cell Mol Life Sci 57:1272–1286

    Article  CAS  PubMed  Google Scholar 

  17. Gibson G, Tofel-Grehl B, Scheffold K, Cristofalo V, Blass J (1998) A reproducible procedure for primary culture and subsequent maintenance of multiple lines of human skin fibroblasts. Age 21

  18. Barton D, Le Gloahec V, Patin H, Launay F (1998) Radical chemistry of tert-butyl hydroperoxide (tBHP). Part 1. Studies of the Fe3+-tBHP mechanism. New J Chem 22:559–563

    Google Scholar 

  19. Lin WL, Wang CJ, Tsai YY, Liu CL, Hwang JM et al (2000) Inhibitory effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver. Arch Toxicol 74:467–472

    Article  CAS  PubMed  Google Scholar 

  20. Ochi T, Miyaura S (1989) Cytotoxicity of an organic hydroperoxide and cellular antioxidant defense system against hydroperoxides in cultured mammalian cells. Toxicology 55:69–82

    Article  CAS  PubMed  Google Scholar 

  21. Bird GS, Burgess GM, Putney JW Jr (1993) Sulfhydryl reagents and cAMP-dependent kinase increase the sensitivity of the inositol 1, 4, 5-trisphosphate receptor in hepatocytes. J Biol Chem 268:17917–17923

    CAS  PubMed  Google Scholar 

  22. Malli R, Frieden M, Trenker M, Graier WF (2005) The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J Biol Chem 280:12114–12122

    Article  CAS  PubMed  Google Scholar 

  23. Poirier SN, Poitras M, Laflamme K, Guillemette G (2001) Thiol-reactive agents biphasically regulate inositol 1, 4, 5-trisphosphate binding and Ca(2 +) release activities in bovine adrenal cortex microsomes. Endocrinology 142:2614–2621

    Article  CAS  PubMed  Google Scholar 

  24. Anzai K, Ogawa K, Kuniyasu A, Ozawa T, Yamamoto H et al (1998) Effects of hydroxyl radical and sulfhydryl reagents on the open probability of the purified cardiac ryanodine receptor channel incorporated into planar lipid bilayers. Biochem Biophys Res Commun 249:938–942

    Article  CAS  PubMed  Google Scholar 

  25. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    CAS  PubMed  Google Scholar 

  26. Jourd’heuil D, Jourd’heuil FL, Feelisch M (2003) Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism. J Biol Chem 278:15720–15726

    Article  PubMed  Google Scholar 

  27. Kharitonov VG, Sundquist AR, Sharma VS (1995) Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 270:28158–28164

    Article  CAS  PubMed  Google Scholar 

  28. Kirsch M, Fuchs A, de Groot H (2003) Regiospecific nitrosation of N-terminal-blocked tryptophan derivatives by N2O3 at physiological pH. J Biol Chem 278:11931–11936

    Article  CAS  PubMed  Google Scholar 

  29. Stepuro AI, Piletskaya TP, Stepuro II (2005) Role of thiamine thiol form in nitric oxide metabolism. Biochemistry (Mosc) 70:339–349

    Article  CAS  Google Scholar 

  30. Bischof G, Brenman J, Bredt DS, Machen TE (1995) Possible regulation of capacitative Ca2+ entry into colonic epithelial cells by NO and cGMP. Cell Calcium 17:250–262

    Article  CAS  PubMed  Google Scholar 

  31. Trepakova ES, Cohen RA, Bolotina VM (1999) Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase-dependent refilling of Ca2+ stores. Circ Res 84:201–209

    CAS  PubMed  Google Scholar 

  32. Cohen RA, Weisbrod RM, Gericke M, Yaghoubi M, Bierl C et al (1999) Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res 84:210–219

    CAS  PubMed  Google Scholar 

  33. Doutheil J, Althausen S, Treiman M, Paschen W (2000) Effect of nitric oxide on endoplasmic reticulum calcium homeostasis, protein synthesis and energy metabolism. Cell Calcium 27:107–115

    Article  CAS  PubMed  Google Scholar 

  34. Viner RI, Williams TD, Schoneich C (1999) Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. Biochemistry 38:12408–12415

    Article  CAS  PubMed  Google Scholar 

  35. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  CAS  PubMed  Google Scholar 

  36. Okai Y, Higashi-Okai K, FS E, Konaka R, Inoue M (2007) Potent radical-scavenging activities of thiamin and thiamin diphosphate. J Clin Biochem Nutr 40:42–48

    Article  CAS  PubMed  Google Scholar 

  37. Batifoulier F, Verny MA, Besson C, Demigné C, Rémésy C (2005) Determination of thiamine and its phosphate esters in rat tissues analyzed as thiochromes on a RP-amide C16 column. J Chromatogr B 816:67–72

    Article  CAS  Google Scholar 

  38. He J, Kang H, Yan F, Chen C (2004) The endoplasmic reticulum-related events in S-nitrosoglutathione-induced neurotoxicity in cerebellar granule cells. Brain Res 1015:25–33

    Article  CAS  PubMed  Google Scholar 

  39. Calingasan NY, Huang PL, Chun HS, Fabian A, Gibson GE (2000) Vascular factors are critical in selective neuronal loss in an animal model of impaired oxidative metabolism. J Neuropathol Exp Neurol 59:207–217

    CAS  PubMed  Google Scholar 

  40. Galdhar NR, Pawar SS (1976) Hepatic drug metabolism and lipid peroxidation in thiamine deficient rats. Int J Vitam Nutr Res 46:14–23

    CAS  PubMed  Google Scholar 

  41. Kruse M, Navarro D, Desjardins P, Butterworth RF (2004) Increased brain endothelial nitric oxide synthase expression in thiamine deficiency: relationship to selective vulnerability. Neurochem Int 45:49–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by AG14930, AG14600, AG19589 and Burke Medical research Institute. The authors thank Dr. Arthur Cooper for his constructively critical comments. Abel Lajtha has been an inspiration to me for my whole career as a neurochemist. I had the honor of interacting with him in his roles in the American Society for Neurochemistry, Neurochemical Research and the Handbook for Neurochemistry. His activities have had a large impact on my career and the whole neurochemistry community. His vision for each of these has been fulfilled. He has always made time for me and has always encouraged me. His faith in me enabled me to accomplish goals that I would not have attempted. I am very grateful to Abel for being such a positive influence for so many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Gibson.

Additional information

Special issue article in honor of Dr. Abel Lajtha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HM., Chen, HL. & Gibson, G.E. Thiamine and Oxidants Interact to Modify Cellular Calcium Stores. Neurochem Res 35, 2107–2116 (2010). https://doi.org/10.1007/s11064-010-0242-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0242-z

Keywords

Navigation