Skip to main content

Advertisement

Log in

Alterations in Inflammatory Mediators, Oxidative Stress Parameters and Energetic Metabolism in the Brain of Sepsis Survivor Rats

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sepsis is characterized by biochemical alterations in the central nervous system at early times and cognitive impairment at late times after induction in sepsis animal model. In order to understand at least in part the mechanism of disease, we have evaluated the effects of sepsis on cytokine levels in the cerebrospinal fluid (CSF); oxidative parameters; the activity of the electron transport chain enzymes; and creatine kinase (CK) activity in the brain of sepsis survivor rats 10 days after cecal ligation and perforation (CLP). Male Wistar rats underwent CLP with “basic support” or sham-operated. Ten days after surgery, the animals were killed and prefrontal cortex, cortex, hippocampus, striatum, cerebellum, and CSF were obtained. It was found a decrease in the levels of TNF-α (P = 0.001), IL-1β (P = 0.008), IL-6 (P = 0.038), and IL-10 (P = 0.022) in the CSF; an increase in the TBARS only hippocampus (0.027); an up-regulation in the activity of complex II (P = 0.024), III (P = 0.018), and IV (P = 0.047) only in the prefrontal cortex; a decrease in the CK activity in the cerebellum (P = 0.001) and striatum (P = 0.0001), and an increase in the hippocampus (P = 0.0001) and cortex (P = 0.0001). Oxidative stress and mitochondrial alterations observed during early times in sepsis, persisted up to 10 days after surgery. The cytokines levels during the early times were found at high levels, decreasing to low levels after 10 days. In conclusion, these findings may contribute for a better comprehension of the cognitive damage in sepsis survivor rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  CAS  PubMed  Google Scholar 

  2. Marshall JC, Deitch C, Moldawer LL, Opal S, Redl H, Van der Poll T (2005) Preclinical models of shock and sepsis: what can their tells us? Shock 24:1Y6

    Google Scholar 

  3. Comim CM, Constantino LC, Barichello T et al (2009) Cognitive impairment in the septic brain. Curr Neurovasc Res 6:194–203

    Article  PubMed  Google Scholar 

  4. Rietschel ET, Brade H, Holst O et al (1996) Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol 216:39–81

    CAS  PubMed  Google Scholar 

  5. Wilson JX, Young GB (2003) Progress in clinical neurosciences: sepsis- associated encephalopathy: evolving concepts. Can J Neuroll Sci 30:98–105

    Google Scholar 

  6. Chao CC, Hu S, Peterson PK (1995) Glia, cytokines, and neurotoxicity. Crit Rev Neurobiol 9:189–205

    CAS  PubMed  Google Scholar 

  7. Hu S, Peterson PK, Chao CC (1997) Cytokine-mediated neuronal apoptosis. Neurochem Int 30:427–431

    Article  CAS  PubMed  Google Scholar 

  8. Messaris E, Memos N, Chatzigianni E et al (2004) Time-dependent mitochondrial-mediated programmed neuronal cell death prolongs survival in sepsis. Crit Care Med 32:1764–1770

    Article  PubMed  Google Scholar 

  9. Semmler A, Okulla T, Sastre M et al (2005) Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat 30:144–157

    Article  CAS  PubMed  Google Scholar 

  10. Barichello T, Fortunato JJ, Vitali AM et al (2006) Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34:886–889

    Article  PubMed  Google Scholar 

  11. Abd El-Gawad HM, Khalifa AE (2001) Quercetin, coenzyme Q10, and Lcanavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol Res 43:257–263

    Article  CAS  PubMed  Google Scholar 

  12. Boczkowski J, Lisdero CL, Lanone S (1999) Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. Faseb J 13:1637–1646

    CAS  PubMed  Google Scholar 

  13. Comim CM, Rezin GT, Scaini G et al (2008) Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. Mitochondrion 8:313–318

    Article  CAS  PubMed  Google Scholar 

  14. Brealey D, Brand M, Hargreaves I et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  CAS  PubMed  Google Scholar 

  15. Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10:228

    Article  PubMed  Google Scholar 

  16. Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–741

    Article  CAS  PubMed  Google Scholar 

  17. Crouser ED, Julian MW, Blaho DV et al (2002) Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med 30:276–284

    Article  CAS  PubMed  Google Scholar 

  18. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  19. Crouser ED, Julian MW, Dorinsky PM (1999) Ileal VO2-DO2 alterations induced by endotoxin correlate with severity of mitochondrial injury. Am J Respir Crit Care Med 160:1347–1353

    CAS  PubMed  Google Scholar 

  20. Tuon L, Comim CM, Petronilho F et al (2008) Time-dependent behavioral recovery after sepsis in rats. Intensive Care Med 34:1724–1731

    Article  CAS  PubMed  Google Scholar 

  21. Ritter C, Andrades M, Frota Júnior ML et al (2003) Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med 29:1782–1789

    Article  PubMed  Google Scholar 

  22. Papadopoulos MC, Davies DC, Moss RF et al (2000) Pathophysiology of septic encephalopathy: a review. Crit Care Med 28:3019–3024

    Article  CAS  PubMed  Google Scholar 

  23. Rothwell NJ, Luheshi GN (2000) nterleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23:618–625

    Article  CAS  PubMed  Google Scholar 

  24. van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  25. Aly H, Khashaba MT, El-Ayouty M et al (2006) IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev 28:178–182

    Article  PubMed  Google Scholar 

  26. Oberholzer A, Oberholzer C, Moldawer LL (2001) Sepsis syndromes: understanding the role of innate and acquired immunity. Shock 16:83–96

    Article  CAS  PubMed  Google Scholar 

  27. Ertel W, Kremer JP, Kenney J et al (1995) Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 85:1341–1347

    CAS  PubMed  Google Scholar 

  28. Dal-Pizzol F, Ritter C, Cassol-Jr OJ et al (2010) Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res 35:1–12

    Article  CAS  PubMed  Google Scholar 

  29. Munford RS, Pugin J (2001) Normal response to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med 163:316–321

    CAS  PubMed  Google Scholar 

  30. Zhang X, Morrison DC (1993) Lipopolysaccharide structure-function relationship in activation versus reprogramming of mouse peritoneal macrophages. J Leukoc Biol 54:444–450

    CAS  PubMed  Google Scholar 

  31. Batandier C, Guigas B, Detaille D et al (2006) The in reactive oxygen species production induced by a reverse-electron flux at respiratory chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38:33–42

    Article  CAS  PubMed  Google Scholar 

  32. Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268

    Article  PubMed  Google Scholar 

  33. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  PubMed  Google Scholar 

  34. Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24:69–176

    Article  CAS  PubMed  Google Scholar 

  35. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  PubMed  Google Scholar 

  36. Crouser ED, Julian MW, Huff JE et al (2004) Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia. Crit Care Med 32:478–488

    Article  CAS  PubMed  Google Scholar 

  37. Enns GM (2003) The contribution of mitochondria to common disorders. Mol Genet Metab 80:11–26

    Article  CAS  PubMed  Google Scholar 

  38. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C686

    Article  CAS  PubMed  Google Scholar 

  39. Whittingham TS, Lipton P (1981) Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37:1618–1621

    Article  CAS  PubMed  Google Scholar 

  40. Stachowiak O, Dolder M, Wallimann T et al (1998) Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from CNPq (ELS, JQ and FD-P), and UNESC (ELS, JQ and FD-P). ELS, JQ and FD-P are CNPq Research Fellows. CMC is holder of a CNPq Studentship, LSC is holder of a FAPESC studentship and GTR, GS and FP are holders of CAPES studentships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Quevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comim, C.M., Cassol-Jr, O.J., Constantino, L.S. et al. Alterations in Inflammatory Mediators, Oxidative Stress Parameters and Energetic Metabolism in the Brain of Sepsis Survivor Rats. Neurochem Res 36, 304–311 (2011). https://doi.org/10.1007/s11064-010-0320-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0320-2

Keywords

Navigation