Skip to main content
Log in

Moderate Grade Hyperammonemia Induced Concordant Activation of Antioxidant Enzymes is Associated with Prevention of Oxidative Stress in the Brain Slices

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acute hyperammonemia (HA) induced oxidative stress in the brain is considered to play critical roles in the neuropathology of end stage hepatic encephalopathy (HE). Moderate grade HA led minimal/moderate type HE is more common in the patients with chronic liver failure. However, implication of oxygen free radical (\( {\text{O}}_{ 2}^{ - } \)) based oxidative mechanisms remain to be defined during moderate grade HA. This article describes profiles of all the antioxidant enzymes Vis a Vis status of oxidative stress/damage in the brain slices exposed to 0.1–1 mM ammonia, reported to exist in the brain of animals with chronic liver failure and in liver cirrhotic patients. Superoxide dismutase catalyzes the first step of antioxidant mechanism and, with concerted activity of catalase, neutralizes \( {\text{O}}_{ 2}^{ - } \) produced in the cells. Both these enzymes remained unchanged up to 0.2–0.3 mM ammonia, however, with significant increments (P < 0.01–0.001) in the brain slices exposed to 0.5–1 mM ammonia. This was consistent with the similar pattern of production of reactive oxygen species in the brain slices. However, level of lipid peroxidation remained unchanged throughout the ammonia treatment. Synchronized activities of glutathione peroxidase and glutathione reductase regulate the level of glutathione to maintain reducing equivalents in the cells. The activities of both these enzymes also increased significantly in the brain slices exposed to 0.5–1 mM ammonia with concomitant increments in GSH/GSSG ratio and in the levels of total and protein bound thiol. The findings suggest resistance of brain cells from ammonia induced oxidative damage during moderate grade HA due to concordant activations of antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  PubMed  CAS  Google Scholar 

  2. Butterworth RF (2000) Hepatic encephalopathy: a neuropsychiatric disorder involving multiple neurotransmitter systems. Curr Opin Neurol 13:721–727

    Article  PubMed  CAS  Google Scholar 

  3. Rama Rao KV, Norenberg MD (2001) Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis 16:67–78

    Article  Google Scholar 

  4. Kosenko E, Felipo V, Montoliu C et al (1996) Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria. Metab Brain Dis 12:69–82

    Article  Google Scholar 

  5. Rama Rao KV, Jayakumar AR, Norenberg MD (2005) Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem Int 47:31–38

    Article  PubMed  CAS  Google Scholar 

  6. Albrecht J, Węgrzynowicz M (2007) Cyclic GMP in blood and minimal hepatic encephalopathy: fine tuning of the diagnosis. J Mol Med 85:203–205

    Article  PubMed  Google Scholar 

  7. Felipo V (2009) Hyperammonemia. In: Lajtha A, Banik N, Ray SK (eds) Handbook of neurochemistry and molecular neurobiology, brain and spinal cord trauma, 3rd edn. Springer, Berlin, pp 43–69

    Chapter  Google Scholar 

  8. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative disease and oxidative stress. Biomed Pharmacother 58:39–46

    Article  PubMed  CAS  Google Scholar 

  9. Magistretti PJ (2003) Brain energy metabolism. In: Squire LR (ed) Fundamental neuroscience, 2nd edn. Elsevier, New York, pp 339–360

    Google Scholar 

  10. Singh S, Koiri RK, Trigun SK (2008) Acute and chronic hyperammonemia modulate antioxidant enzymes differently in cerebral cortex and cerebellum. Neurochem Res 33:103–113

    Article  PubMed  CAS  Google Scholar 

  11. Singh S, Trigun SK (2010) Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of nadph-producing pathway. Cerebellum 9:384–397

    Article  PubMed  CAS  Google Scholar 

  12. Murthy CR, Rama Rao KV, Bai G et al (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66:282–288

    Article  PubMed  CAS  Google Scholar 

  13. Rama Rao KV, Chen M, Simard JM et al (2003) Suppression of ammonia-induced astrocyte swelling by cyclosporin A. J Neurosci Res 74:891–897

    Article  PubMed  CAS  Google Scholar 

  14. Norenberg MD, Jayakumar AR, Rama Rao KV (2004) Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 19:313–329

    Article  PubMed  CAS  Google Scholar 

  15. Schliess F, Gorg B, Fischer R et al (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16:739–741

    PubMed  CAS  Google Scholar 

  16. Hermenegildo C, Monfort P, Felipo V (2000) Activation of N-methyl-d-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31:709–715

    Article  PubMed  CAS  Google Scholar 

  17. Albrecht J (2007) Ammonia toxicity in the central nervous system. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology. Amino acids and peptides in the nervous system. Springer, Berlin, pp 261–276

    Chapter  Google Scholar 

  18. Wang T, Kass S (1997) Preparation of brain slices. In: Rayne RC (ed) Neurotransmitter methods. Humana press, Totowa, pp 1–14

    Chapter  Google Scholar 

  19. Pandey P, Singh SK, Trigun SK (2005) Developing brain of moderately hypothyroid mice shows adaptive changes in the key enzymes of glucose metabolism. Neurol Psychiat Brain Res 12:159–164

    Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  21. Montoliu C, Valles S, Renau-Piqueras J et al (1994) Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J Neurochem 63:1855–1862

    Article  PubMed  CAS  Google Scholar 

  22. Shaik IH, Mehvar R (2006) Rapid determination of reduced and oxidized glutathione levels using a new thiol-masking reagent and the enzymatic recycling method: application to the rat liver and bile samples. Anal Bioanal Chem 385:105–113

    Article  PubMed  CAS  Google Scholar 

  23. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  24. Bergmeyer HU, Gawehn K, Grasse M (1974) Enzymes as biochemical reagents. In: Bergmeyer HU (ed) Methods of enzyme analysis. Academic Press, New York, pp 438–448

    Google Scholar 

  25. Sathyasaikumar KV, Swapna I, Reddy PVB et al (2007) Fulminant hepatic failure in rats induces oxidative stress differentially in cerebral cortex, cerebellum and pons medulla. Neurochem Res 32:517–524

    Article  PubMed  CAS  Google Scholar 

  26. Del RD, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  Google Scholar 

  27. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  PubMed  CAS  Google Scholar 

  28. Botsoglou NA, Fletouris DJ, Papageorgiou GE et al (1994) Rapid, sensitive and specific thio barbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. J Agric Food Chem 42:1931–1937

    Article  CAS  Google Scholar 

  29. Prestes CC, Sgaravatti AM, Pederzolli CD et al (2006) Citrulline and ammonia accumulating in citrullinemia reduces antioxidant capacity of rat brain in vitro. Metab Brain Dis 21:63–74

    Article  PubMed  CAS  Google Scholar 

  30. Garcia MV, Lopez-Mediavilla C, de la Juanes Pena MC et al (2004) Antioxidant defence of the neonatal rat brain against acute hyperammonemia. Brain Res 1001:159–163

    Article  PubMed  CAS  Google Scholar 

  31. Rama Rao KV, Jayakumar AR, Norenberg MD (2003) Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab Brain Dis 18:113–127

    Article  PubMed  CAS  Google Scholar 

  32. Koiri RK, Trigun SK, Mishra L et al (2009) Regression of Dalton’s lymphoma in vivo via decline in lactate dehydrogenase and induction of apoptosis by a ruthenium (II)-complex containing 4-carboxy-N ethylbenzamide as ligand. Invest New Drugs 27:503–516

    Article  CAS  Google Scholar 

  33. Bemeur C, Desjardins P, Butterworth RF (2010) Evidence for oxidative/nitrosative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 25:3–9

    Article  PubMed  CAS  Google Scholar 

  34. Song G, Dhodda VK, Blei AT et al (2002) GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J Neurosci Res 68:730–737

    Article  PubMed  CAS  Google Scholar 

  35. Halliwell B, Gutteridge JMC (1985) Oxygen radicals and nervous system. Trends Neurosci 8:22–26

    Article  CAS  Google Scholar 

  36. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drug Aging 18:685–716

    Article  CAS  Google Scholar 

  37. Kosenko E, Venediktova N, Kamanisky Y et al (2003) Sources of oxygen radical in brain in acute ammonia intoxication in vivo. Brain Res 981:193–200

    Article  PubMed  CAS  Google Scholar 

  38. Patenaude A, Murthy MR, Mirault ME (2005) Emerging roles of thioredoxin cycle enzymes in the central nervous system. Cell Mol Life Sci 62:1063–1080

    Article  PubMed  CAS  Google Scholar 

  39. Tureen JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  Google Scholar 

  40. Flohe RB (1999) Tissue-specific function of individual glutathione peroxidases. Free Radic Bio Med 27:951–965

    Article  Google Scholar 

  41. Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  PubMed  CAS  Google Scholar 

  42. Kosenko E, Kaminski Y, Lopata O et al (1999) Blocking of NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Radic Res 26:1369–1374

    CAS  Google Scholar 

  43. Furtunato JJ, Feier G, Vitali AM (2006) Malathione-induced oxidative stress in rat brain regions. Neurochem Res 31:671–678

    Article  Google Scholar 

  44. Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79:157–165

    Article  PubMed  CAS  Google Scholar 

  45. Hovatta I, Tennant RS, Helton R et al (2005) Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438:662–666

    Article  PubMed  CAS  Google Scholar 

  46. Rokutan K, Johnton RB Jr, Kawai K (1994) Oxidative stress induces S-thiolation of specific proteins in cultured gastric mucosal cells. Am J Physiol 266:G247–G254

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by DST project (No. SR/SO/AS-08/2007) sanctioned to Surendra Kumar Trigun. The infrastructural facilities due to DST FIST, UGC CAS Programmes to Department of Zoology and Brain Research Centre, BHU, are also acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Kumar Trigun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrotra, A., Trigun, S.K. Moderate Grade Hyperammonemia Induced Concordant Activation of Antioxidant Enzymes is Associated with Prevention of Oxidative Stress in the Brain Slices. Neurochem Res 37, 171–181 (2012). https://doi.org/10.1007/s11064-011-0596-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0596-x

Keywords

Navigation