Skip to main content

Advertisement

Log in

Neonatal Morphine Administration Leads to Changes in Hippocampal BDNF Levels and Antioxidant Enzyme Activity in the Adult Life of Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is know that repeated exposure to opiates impairs spatial learning and memory and that the hippocampus has important neuromodulatory effects after drug exposure and withdrawal symptoms. Thus, the aim of this investigation was to assess hippocampal levels of BDNF, oxidative stress markers associated with cell viability, and TNF-α in the short, medium and long term after repeated morphine treatment in early life. Newborn male Wistar rats received subcutaneous injections of morphine (morphine group) or saline (control group), 5 μg in the mid-scapular area, starting on postnatal day 8 (P8), once daily for 7 days, and neurochemical parameters were assessed in the hippocampus on postnatal days 16 (P16), 30 (P30), and 60 (P60). For the first time, we observed that morphine treatment in early life modulates BDNF levels in the medium and long term and also modulates superoxide dismutase activity in the long term. In addition, it was observed effect of treatment and age in TNF-α levels, and no effects in lactate dehydrogenase levels, or cell viability. These findings show that repeated morphine treatment in the neonatal period can lead to long-lasting neurochemical changes in the hippocampus of male rats, and indicate the importance of cellular and intracellular adaptations in the hippocampus after early-life opioid exposure to tolerance, withdrawal and addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

DCF:

Dichlorofluorescein

DCFH:

Dichlorodihydrofluorescein

DMSO:

Dimethyl sulfoxide

DTNB:

5,5’-Dithiobis(2-nitrobenzoic acid)

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

GPx:

Glutathione peroxidase

HEPES:

2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

INT:

2-(4-Iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium chloride

LDH:

Lactate dehydrogenase

MTT:

3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NADPH:

Nicotinamide adenine dinucleotide phosphate, reduced form

PBS:

Phosphate buffered saline

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

SNK:

Student–Newman–Keuls test

SOD:

Superoxide dismutase

TMB:

3,3′,5,5′-Tetramethylbenzidine

TNB:

2-Nitro-5-thiobenzoic acid

TNF-α:

Tumour necrosis factor alpha

TrkB:

Tyrosine kinase B receptor

References

  1. Menon G, Anand KJ, Mdntosh N (1998) Practical approach to analgesia and sedation in the neonatal intensive care unit. Semin Perinatol 22:417–424

    Article  PubMed  CAS  Google Scholar 

  2. Anand KJ, Hall RW (2006) Pharmacological therapy for analgesia and sedation in the newborn. Arch Dis Child Fetal Neonatal Ed 91(6):F448–F453

    Article  PubMed  CAS  Google Scholar 

  3. Van Praag H, Frenk H (1991) Evidence for opiate tolerance in newborn rats. Brain Res Dev Brain Res 60(1):99–102

    Article  PubMed  Google Scholar 

  4. Rozisky JR, Dantas G, Adachi LS, Alves VS, Ferreira MBC et al (2008) Long-term effect of morphine administration in young rats on the analgesic opioid response in adult life. Int J Dev Neurosci 26:561–565

    Article  PubMed  CAS  Google Scholar 

  5. Nandi R, Fitzgerald M (2005) Opioid analgesia in the newborn. Eur J Pain 9:105–108

    Article  PubMed  CAS  Google Scholar 

  6. Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  7. Ingram SL, Vaughan CW, Bagley EE, Connor M, Christie MJ (1998) Enhanced opioid efficacy in opioid dependence is caused by an altered signal transduction pathway. J Neurosci 18:10269–10276

    PubMed  CAS  Google Scholar 

  8. Carlezon WA Jr, Boundy VA, Haile CN, Lane SB, Kalb RG, Neve RL, Nestler EJ (1997) Sensitization to morphine induced by viral-mediated gene transfer. Science 277:812–814

    Article  PubMed  CAS  Google Scholar 

  9. Abul-Husn NS, Annangudi SP, Ma’ayan A, Ramos-Ortolaza DL, Stockton SD Jr, Gomes I et al (2011) Chronic morphine alters the presynaptic protein profile: identification of novel molecular targets using proteomics and network analysis. PLoS ONE 6:e25535

    Article  PubMed  CAS  Google Scholar 

  10. Corrigall WA (1983) Opiates and the hippocampus: a review of the functional and morphological evidence. Pharmacol Biochem Behav 18:255–262

    Article  PubMed  CAS  Google Scholar 

  11. Simonato M (1996) The neurochemistry of morphine addiction in the neocortex. Trends Pharmacol Sci 17:410–415

    Article  PubMed  CAS  Google Scholar 

  12. Gao H, Xiang Y, Sun N, Zhu H, Wang Y, Liu M et al (2007) Metabolic changes in rat prefrontal cortex and hippocampus induced by chronic morphine treatment studied ex vivo by high resolution 1H NMR spectroscopy. Neurochem Int 50:386–394

    Article  PubMed  CAS  Google Scholar 

  13. Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci USA 97:7579–7584

    Article  PubMed  CAS  Google Scholar 

  14. Drake CT, Chavkin C, Milner TA (2007) Opioid systems in the dentate gyrus. Prog Brain Res 163:245–263

    Article  PubMed  CAS  Google Scholar 

  15. Bao G, Kang L, Li H, Li Y, Pu L, Xia P, Ma L, Pei G (2007) Morphine and heroin differentially modulate in vivo hippocampal LTP in opiate-dependent rat. Neuropsychopharmacology 32(8):1738–1749

    Article  PubMed  CAS  Google Scholar 

  16. Pu L, Bao GB, Xu NJ, Ma L, Pei G (2002) Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci 22(5):1914–1921

    PubMed  CAS  Google Scholar 

  17. Guerra D, Sole A, Cami J, Tobena A (1987) Neuropsychological performance in opiate addicts after rapid detoxification. Drug Alcohol Depend 20:261–270

    Article  PubMed  CAS  Google Scholar 

  18. Rozisky JR, Medeiros LF, Adachi LS, Espinosa J, de Souza A, Neto AS et al (2011) Morphine exposure in early life increases nociceptive behavior in a rat formalin tonic pain model in adult life. Brain Res 1367:122–129

    Article  PubMed  CAS  Google Scholar 

  19. Vien TN, Gleason CA, Hays SL, McPherson RJ, Chavkin C, Juul SE (2009) Effects of neonatal stress and morphine on kappa opioid receptor signaling. Neonatology 96:235–243

    Article  PubMed  CAS  Google Scholar 

  20. Juul SE, Beyer RP, Bammler TK, Farin FM, Gleason CA (2011) Effects of neonatal stress and morphine on murine hippocampal gene expression. Pediatr Res 69:285–292

    Article  PubMed  CAS  Google Scholar 

  21. McPherson RJ, Gleason C, Mascher-Denen M, Chan M, Kellert B, Juul SE (2007) A new model of neonatal stress which produces lasting neurobehavioral effects in adult rats. Neonatology 92:33–41

    Article  PubMed  Google Scholar 

  22. Boasen JF, McPherson RJ, Hays SL, Juul SE, Gleason CA (2009) Neonatal stress or morphine treatment alters adult mouse conditioned place preference. Neonatology 95:230–239

    Article  PubMed  Google Scholar 

  23. Halliwell B, Gutteridge JM (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci 899:136–147

    PubMed  Google Scholar 

  24. Guzmán D, Vázquez I, Brizuela N, Alvarez R, Mejía G, García E et al (2006) Assessment of oxidative damage induced by acute doses of morphine sulfate in postnatal and adult rat brain. Neurochem Res 31:549–554

    Article  PubMed  Google Scholar 

  25. Papadopoulos MC, Koumenis IL, Dugan LL, Giffard RG (1997) Vulnerability to glucose deprivation injury correlates with glutathione levels in astrocytes. Brain Res 748:151–156

    Article  PubMed  CAS  Google Scholar 

  26. Kroemer G (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3:614–620

    Article  PubMed  CAS  Google Scholar 

  27. Turchan-Cholewo J, Dimayuga VM, Gupta S, Gorospe RM, Keller JN, Bruce-Keller AJ (2009) NADPH oxidase drives cytokine and neurotoxin release from microglia and macrophages in response to HIV-Tat. Antioxid Redox Signal 11:193–204

    Article  PubMed  CAS  Google Scholar 

  28. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P et al (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152

    Article  PubMed  CAS  Google Scholar 

  29. Hohn A, Leibrock J, Bailey K, Barde YA (1990) Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344:339–341

    Article  PubMed  CAS  Google Scholar 

  30. Ernfors P, Merlio JP, Persson H (1992) Cells expressing mRNA for neurotrophins and their receptors during embryonic rat development. Eur J Neurosci 4:1140–1158

    Article  PubMed  Google Scholar 

  31. Zhang HN, Ko MC (2009) Seizure activity involved in the up-regulation of BDNF mRNA expression by activation of central mu opioid receptors. Neuroscience 161:301–310

    Article  PubMed  CAS  Google Scholar 

  32. Altar CA, Boylan CB, Jackson C, Hershenson S, Miller J, Wiegand SJ et al (1992) Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo. Proc Natl Acad Sci USA 89:11347–11351

    Article  PubMed  CAS  Google Scholar 

  33. Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23:742–747

    PubMed  CAS  Google Scholar 

  34. McGough NN, He DY, Logrip ML, Jeanblanc J, Phamluong K, Luong K et al (2004) RACK1 and brain-derived neurotrophic factor: a homeostatic pathway that regulates alcohol addiction. J Neurosci 24:10542–10552

    Article  PubMed  CAS  Google Scholar 

  35. Filip M, Faron-Górecka A, Kuśmider M, Gołda A, Frankowska M, Dziedzicka-Wasylewska M (2006) Alterations in BDNF and trkB mRNAs following acute or sensitizing cocaine treatments and withdrawal. Brain Res 1071:218–225

    Article  PubMed  CAS  Google Scholar 

  36. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 43(4):894–898

    Article  Google Scholar 

  37. Liang J, Zheng X, Chen J, Li Y, Xing X, Bai Y (2011) Roles of bdnf, dopamine d(3) receptors, and their interactions in the expression of morphine-induced context-specific locomotor sensitization. Eur Neuropsychopharmacol 21:825–834

    Article  PubMed  CAS  Google Scholar 

  38. Ribeiro S, Yang P, Reyes-Vazquez C, Swann A, Dafny N (2005) Sex differences in tail-flick latency of non-stressed and stressed rats. Int J Neurosci 115(10):1383–1395

    Article  PubMed  Google Scholar 

  39. Silveira PP, Portella AK, Assis SACN, Nieto FB, Diehl LA, Crema LM, Peres W et al (2010) Early life experience alters behavioral responses to sweet food and accumbal dopamine metabolism. Int J Dev Neurosci 28:111–118

    Article  PubMed  CAS  Google Scholar 

  40. Silveira PP, Portella AK, Benetti C da S, Zugno AI, Scherer EB, Mattos CB, Wyse AT et al (2011) Association between Na+, K+ -ATPase activity and the vulnerability/resilence to mood disorders induced by early life experience. Neurochem Res 36(11):2075–2082

  41. Tanaka T (2004) The relationships between litter size, offspring weight and behavioral development in laboratory mice. Mamm Study Tokio 29:147–153

    Article  Google Scholar 

  42. Fitzgerald M, Anand KJ (1993) Developmental neuroanatomy and neurophysiology of pain. In: Schechter NL, Berde CB, Yaster M (eds) Pain in infants, children, and adolescents. Williams & Wilkins, Baltimore, pp 11–31

    Google Scholar 

  43. Pattinson D, Fitzgerald M (2004) The neurobiology of infant pain: development of excitatory and inhibitory neurotransmission in the spinal dorsal horn. Reg Anesth Pain Med 29:36–44

    PubMed  Google Scholar 

  44. Bishop B (1982) Neural plasticity. Part 2. Postnatal maturation and function induced plasticity. Phys Ther 62:1132–1143

    PubMed  CAS  Google Scholar 

  45. Kim JJ, Foy MR, Thompson RF (1996) Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc Natl Acad Sci USA 93:4750–4753

    Article  PubMed  CAS  Google Scholar 

  46. Rabinowicz T, de Courten-Myers GM, Petetot JM, Xi G, de los Reyes E (1996) Human cortex development: estimates of neural numbers indicate major loss late during gestation. J Neuropathol Exp Neurol 55:320–328

    Article  PubMed  CAS  Google Scholar 

  47. Baudry M, Arst D, Oliver M, Lynch G (1981) Development of glutamate binding sites and their regulation by calcium in rat hippocampus. Dev Brain Res 1:37–48

    Article  CAS  Google Scholar 

  48. Harris KH, Teyler TJ (1984) Developmental onset of long-term potentiation in area CA1 of the rat hippocampus. J Physiol Lond 346:27–48

    PubMed  CAS  Google Scholar 

  49. Dudek SM, Bear MF (1993) Bi-directional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13:2910–2918

    PubMed  CAS  Google Scholar 

  50. McLean H, Caillard O, Ben-Ari Y, Gaiarsa JL (1996) Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. J Physiol 496:471–477

    PubMed  CAS  Google Scholar 

  51. Bolshakov VY, Siegelbaum SA (1994) Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264:1148–1152

    Article  PubMed  CAS  Google Scholar 

  52. Rozisky JR, Souza RS, Adachi LS, Capiotti KM, Ramos DB, Bogo MR et al (2010) Neonatal morphine exposure alters E-NTPDase activity and gene expression pattern in spinal cord and cerebral cortex of rats. Eur J Pharmacol 642:72–76

    Article  PubMed  CAS  Google Scholar 

  53. Rozisky JR, Vendite D, Fontella FU, Nonose Y, Laste G, Dalmaz C, Caumo W, Torres IL (2012) Morphine treatment in early life alters glutamate uptake in the spinal synaptosomes of adult rats. Neurosci Lett 529(1):51–4

    Google Scholar 

  54. Rozisky JR, Nonose Y, Laste G, Santos VS, de Macedo IC, Battastini AM, Caumo C, Torres IL (2012) Morphine treatment alters nucleotidase activities in rat blood serum. J Exp Pharmacol 4:1–7

    Google Scholar 

  55. Delmas-Beauvieux MC, Peuchant E, Dumon MF, Receveur MC, Le Bras M, Clerc M (1995) Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malaria. Clin Biochem 28:163–169

    Article  PubMed  CAS  Google Scholar 

  56. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  PubMed  CAS  Google Scholar 

  57. Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 21:44–52

    Article  Google Scholar 

  58. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  59. Siqueira IR, Elsner VR, Leite MC, Vanzella C, dos Moysés FS, Spindler C (2011) Ascorbate uptake is decreased in the hippocampus of ageing rats. Neurochem Int 58:527–532

    Article  PubMed  CAS  Google Scholar 

  60. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  61. Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90

    Article  PubMed  CAS  Google Scholar 

  62. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  63. De Oliveira MR, Silvestrin RB, Souza TM, Moreira JCF (2007) Oxidative stress in the hippocampus, anxiety-like behavior and decreased locomotory and exploratory activity of adult rats. Effects of sub acute vitamin A supplementation at therapeutic doses. Neurotoxicology 28:1191–1199

    Article  PubMed  Google Scholar 

  64. Bolaños CA, Nestler EJ (2004) Neurotrophic mechanisms in drug addiction. NeuroMol Med 51:69–83

    Article  Google Scholar 

  65. Wan L, Xie Y, Su L, Liu Y, Wang Y, Wang Z (2011) RACK1 affects morphine reward via BDNF. Brain Res 1416:26–34

    Article  PubMed  CAS  Google Scholar 

  66. Yu H, Hu H, Meng H, Deng W, Fu Y, Luo Q (2011) Brain-derived neurotrophic factor and Bcl-2 expression in rat brain areas following chronic morphine treatment. Neural Regen Res 6(7):528–533

    CAS  Google Scholar 

  67. Sharma HS, Sjöquist PO, Ali SF (2010) Alterations in blood-brain barrier function and brain pathology by morphine in the rat. Neuroprotective effects of antioxidant H-290/51. Acta Neurochir Suppl 106:61–66

    Article  Google Scholar 

  68. Sharma HS, Sjöquist PO, Ali SF (2007) Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: neuroprotective effects of a new antioxidant compound H-290/51. Curr Pharm Des 13(18):1903–1923

    Article  PubMed  CAS  Google Scholar 

  69. Sharma HS, Lundstedt T, Boman A, Lek P, Seifert E, Wiklund L, Ali SF (2006) A potent serotonin-modulating compound AP-267 attenuates morphine withdrawal-induced blood-brain barrier dysfunction in rats. Ann N Y Acad Sci 1074:482–496

    Article  PubMed  CAS  Google Scholar 

  70. Freeman BA, Crapo JD (1982) Biology of disease. Free radicals and tissue injury. Lab Invest 47:412–426

    PubMed  CAS  Google Scholar 

  71. Halliwell B (2006) Oxidative stress and neurodegeneration. Where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  72. Salvemini D (2009) Peroxynitrite and opiate antinociceptive tolerance: a painful reality. Arch Biochem Biophys 484:238–244

    Article  PubMed  CAS  Google Scholar 

  73. Payabvash S, Ghahremani MH, Goliaei A, Mandegary A, Shafaroodi H, Amanlou M et al (2006) Nitric oxide modulates glutathione synthesis during endotoxemia. Free Radic Biol Med 41:1817–1828

    Article  PubMed  CAS  Google Scholar 

  74. Das SK, Mukherjee S, Gupta G, Rao DN, Vasudevan DM (2010) Protective effect of resveratrol and vitamin E against ethanol-induced oxidative damage in mice: biochemical and immunological basis. Indian J Biochem Biophys 47:32–37

    PubMed  CAS  Google Scholar 

  75. Tai YH, Wang YH, Wang JJ, Tao PL, Tung CS, Wong CS (2006) Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphinetolerant rats. Pain 124:77–86

    Article  PubMed  CAS  Google Scholar 

  76. Tsai RY, Jang FL, Tai YH, Lin SL, Shen CH, Wong CS (2008) Ultra-low-dose naloxone restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in PTX-treated rats. Neuropsychopharmacology 33:2772–2782

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Brazilian National Council for Scientific and Technological Development—CNPq (I.L.S. Torres, W. Caumo, I.R. Siqueira, C. Dalmaz); the National Coordination for the Development of Higher Education Personnel—CAPES (J.R. Rozisky, G. Laste, I.C. de Macedo) Graduate Research Group (GPPG) of Hospital de Clínicas de Porto Alegre (I.L.S. Torres—Grant 08345) and FAPERGS/CNPq (PRONEM-003/2011).

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. S. Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozisky, J.R., Laste, G., de Macedo, I.C. et al. Neonatal Morphine Administration Leads to Changes in Hippocampal BDNF Levels and Antioxidant Enzyme Activity in the Adult Life of Rats. Neurochem Res 38, 494–503 (2013). https://doi.org/10.1007/s11064-012-0941-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0941-8

Keywords

Navigation