Skip to main content

Advertisement

Log in

Effects of Sevoflurane on Self-Renewal Capacity and Differentiation of Cultured Neural Stem Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sevoflurane anesthesia in infant rats can result in long-term cognitive impairment, possibly by inhibiting neurogenesis. The hippocampus is critical for memory consolidation and is one of only two mammalian brain regions where neural stem cells (NSCs) are renewed continuously throughout life. To elucidate the pathogenesis of sevoflurane-induced cognitive dysfunction, we measured the effects of clinical sevoflurane doses on the survival, proliferation, and differentiation of hippocampal NSCs. Neural stem cells were isolated from Sprague–Dawley rat embryos, expanded in vitro, and exposed to sevoflurane at 0.5, 1, or 1.5 minimal alveolar concentration (MAC) for 1 or 6 h. Two days after treatment, cell viability, cytotoxicity, and apoptosis rate were estimated by WST-1 assay, lactate dehydrogenase (LDH) activity, and TdT-mediated dUTP-biotin nick end labeling (TUNEL), respectively, while proliferation rate was assessed by 5-ethynyl-2′-deoxyuridine (BrdU) incorporation and Ki67 staining. Differentiation was assayed 7 days after treatment by immunocytochemistry and Western blots of neuron and glial markers. The phosphorylation level of p44/42 extracellular regulated kinases (ERK1/2) was measured in the proliferation and differentiation phases respectively. Sevoflurane at 1 MAC or 1.5 MAC for 1 h increased viable cell number whereas a 6 h exposure at these same concentrations suppressed proliferation and promoted apoptotic death (P < 0.01). Sevoflurane had no effect on NSC differentiation, and a sub-clinical concentration (0.5 MAC) altered neither proliferation nor viability. The phosphorylation level of ERK1/2 increased after 1 h of 1 MAC or 1.5 MAC of sevoflurane exposure in the proliferation phase, but not in the differentiation phase. Brief (1 h) exposure to sevoflurane at clinical concentrations enhanced proliferation of cultured NSCs possibly mediated by ERK1/2, but a 6 h exposure suppressed proliferation and induced apoptosis. Prolonged sevoflurane exposure may decrease the self-renewal capacity of hippocampal NSCs, resulting in cognitive deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804

    Article  PubMed  Google Scholar 

  2. Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V, Visrodia KH, Alvi RS, Ku B, Lee MT, Dai R (2009) Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 110:834–848

    Article  PubMed  CAS  Google Scholar 

  3. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882

    PubMed  CAS  Google Scholar 

  4. Trouche S, Bontempi B, Roullet P, Rampon C (2009) Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc Natl Acad Sci U S A 106:5919–5924

    Article  PubMed  CAS  Google Scholar 

  5. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191

    Article  PubMed  CAS  Google Scholar 

  6. Culley DJ, Boyd JD, Palanisamy A, Xie Z, Kojima K, Vacanti CA, Tanzi RE, Crosby G (2011) Isoflurane decreases self-renewal capacity of rat cultured neural stem cells. Anesthesiology 115:754–763

    Article  PubMed  CAS  Google Scholar 

  7. Fang F, Xue Z, Cang J (2012) Sevoflurane exposure in 7-day-old rats affects neurogenesis, neurodegeneration and neurocognitive function. Neurosci Bull 28:499–508

    Article  PubMed  CAS  Google Scholar 

  8. Conzen PF, Vollmar B, Habazettl H, Frink EJ, Peter K, Messmer K (1992) Systemic and regional hemodynamics of isoflurane and sevoflurane in rats. Anesth Analg 74:79–88

    Article  PubMed  CAS  Google Scholar 

  9. Wernig M, Brustle O (2002) Fifty ways to make a neuron: shifts in stem cell hierarchy and their implications for neuropathology and CNS repair. J Neuropathol Exp Neurol 61:101–110

    PubMed  Google Scholar 

  10. Zou X, Patterson TA, Divine RL, Sadovova N, Zhang X, Hanig JP, Paule MG, Slikker W Jr, Wang C (2009) Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. Int J Dev Neurosci 27:727–731

    Article  PubMed  CAS  Google Scholar 

  11. Slikker W Jr, Zou X, Hotchkiss CE, Divine RL, Sadovova N, Twaddle NC, Doerge DR, Scallet AC, Patterson TA, Hanig JP, Paule MG, Wang C (2007) Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98:145–158

    Article  PubMed  CAS  Google Scholar 

  12. Loepke AW, Istaphanous GK, McAuliffe JJ 3rd, Miles L, Hughes EA, McCann JC, Harlow KE, Kurth CD, Williams MT, Vorhees CV, Danzer SC (2009) The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory. Anesth Analg 108:90–104

    Article  PubMed  CAS  Google Scholar 

  13. Ieraci A, Herrera DG (2007) Single alcohol exposure in early life damages hippocampal stem/progenitor cells and reduces adult neurogenesis. Neurobiol Dis 26:597–605

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka S, Ishikawa M, Arai M, Genda Y, Sakamoto A (2012) Changes in microRNA expression in rat lungs caused by sevoflurane anesthesia: a TaqMan(R) low-density array study. Biomed Res 33:255–263

    Article  PubMed  CAS  Google Scholar 

  15. Sall JW, Stratmann G, Leong J, McKleroy W, Mason D, Shenoy S, Pleasure SJ, Bickler PE (2009) Isoflurane inhibits growth but does not cause cell death in hippocampal neural precursor cells grown in culture. Anesthesiology 110:826–833

    Article  PubMed  CAS  Google Scholar 

  16. Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng J, Zaugg K, Dubey R, Zisch AH, Zaugg M (2009) Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. Anesth Analg 109:1117–1126

    Article  PubMed  CAS  Google Scholar 

  17. Xiao Z, Kong Y, Yang S, Li M, Wen J, Li L (2007) Upregulation of Flk-1 by bFGF via the ERK pathway is essential for VEGF-mediated promotion of neural stem cell proliferation. Cell Res 17:73–79

    Article  PubMed  CAS  Google Scholar 

  18. Chiou SH, Ku HH, Tsai TH, Lin HL, Chen LH, Chien CS, Ho LL, Lee CH, Chang YL (2006) Moclobemide upregulated Bcl-2 expression and induced neural stem cell differentiation into serotoninergic neuron via extracellular-regulated kinase pathway. Br J Pharmacol 148:587–598

    Article  PubMed  CAS  Google Scholar 

  19. Moors M, Cline JE, Abel J, Fritsche E (2007) ERK-dependent and -independent pathways trigger human neural progenitor cell migration. Toxicol Appl Pharmacol 221:57–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation for Distinguished Scientists of the State Key Program of National Natural Science Foundation of China (Grant 30930091 to Lize Xiong) and from the National Natural Science Foundation of China (Grant 30972853 to HaiLong Dong). We thank Dr. Bairen Wang (Professor, Institute of Neuroscience, Fourth Military Medical University, Xi’an Shaanxi, China) for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailong Dong or Lize Xiong.

Additional information

Huang Nie and Zhengwu Peng contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, H., Peng, Z., Lao, N. et al. Effects of Sevoflurane on Self-Renewal Capacity and Differentiation of Cultured Neural Stem Cells. Neurochem Res 38, 1758–1767 (2013). https://doi.org/10.1007/s11064-013-1074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1074-4

Keywords

Navigation