Skip to main content

Advertisement

Log in

Selegiline Reverses Aβ25–35-Induced Cognitive Deficit in Male Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is biochemically characterized by the occurrence of extracellular deposits of amyloid beta peptide (Aβ) and intracellular deposits of the hyperphosphorylated tau protein, which are causally related to the pathological hallmarks senile plaques and neurofibrillary tangles. Monoamine oxidase B (MAO-B) activity, involved in the oxidation of biogenic monoamines, is particularly high around the senile plaques and increased in AD patients in middle to late clinical stages of the disease. Selegiline is a selective and irreversible MAO-B inhibitor and, although clinical trials already shown the beneficial effect of selegiline on cognition of AD patients, its mechanism of action remains to be elucidated. Therefore, we first investigated whether selegiline reverses the impairment of object recognition memory induced by Aβ25–35 in mice, an established model of AD. In addition, we investigated whether selegiline alters MAO-B and MAO-A activities in the hippocampus, perirhinal and remaining cerebral cortices of Aβ25–35-injected male mice. Acute (1 and 10 mg/kg, p.o., immediately post-training) and subchronic (10 mg/kg, p.o., seven days after Aβ25–35 injection and immediately post-training) administration of selegiline reversed the cognitive impairment induced by Aβ25–35 (3 nmol, i.c.v.). Acute administration of selegiline (1 mg/kg, p.o.) in combination with Aβ25–35 (3 nmol) decreased MAO-B activity in the perirhinal and remaining cerebral cortices. Acute administration of selegiline (10 mg/kg, p.o.) decreased MAO-B activity in hippocampus, perirhinal and remaining cerebral cortices, regardless of Aβ25–35 or Aβ35–25 treatment. MAO-A activity was not altered by selegiline or Aβ25–35. In summary, the current findings further support a role for cortical monoaminergic transmission in the cognitive deficits observed in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9 (1):63–75 e62

    Google Scholar 

  2. Comas-Herrera A, Northey S, Wittenberg R, Knapp M, Bhattacharyya S, Burns A (2011) Future costs of dementia-related long-term care: exploring future scenarios. Int Psychogeriatr 23(1):20–30

    Article  PubMed  Google Scholar 

  3. Desai AK, Grossberg GT (2005) Diagnosis and treatment of Alzheimer’s disease. Neurology 64(12 Suppl 3):S34–S39

    Article  PubMed  CAS  Google Scholar 

  4. Doody RS (2005) Refining treatment guidelines in Alzheimer’s disease. Geriatr Suppl: 14–20

  5. Fan LY, Chiu MJ (2010) Pharmacological treatment for Alzheimer’s disease: current approaches and future strategies. Acta Neurol Taiwan 19(4):228–245

    PubMed  Google Scholar 

  6. Jenner P (2004) Preclinical evidence for neuroprotection with monoamine oxidase-B inhibitors in Parkinson’s disease. Neurology 63(7 Suppl 2):S13–S22

    Article  PubMed  Google Scholar 

  7. Waters CH, Sethi KD, Hauser RA, Molho E, Bertoni JM (2004) Zydis selegiline reduces off time in Parkinson’s disease patients with motor fluctuations: a 3-month, randomized, placebo-controlled study. Mov Disord 19(4):426–432

    Article  PubMed  Google Scholar 

  8. Pahwa R, Factor SA, Lyons KE, Ondo WG, Gronseth G, Bronte-Stewart H, Hallett M, Miyasaki J, Stevens J, Weiner WJ (2006) Practice parameter: treatment of parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 66(7):983–995

    Article  PubMed  CAS  Google Scholar 

  9. Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  PubMed  CAS  Google Scholar 

  10. Reinikainen KJ, Soininen H, Riekkinen PJ (1990) Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J Neurosci Res 27(4):576–586

    Article  PubMed  CAS  Google Scholar 

  11. Sparks DL, Woeltz VM, Markesbery WR (1991) Alterations in brain monoamine oxidase activity in aging, Alzheimer’s disease, and pick’s disease. Arch Neurol 48(7):718–721

    Article  PubMed  CAS  Google Scholar 

  12. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, Loffler J, Richards JG (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62(1):15–30

    Article  PubMed  CAS  Google Scholar 

  13. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS, Thal LJ (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. the Alzheimer’s disease cooperative study. N Engl J Med 336(17):1216–1222

    Article  PubMed  CAS  Google Scholar 

  14. Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimer’s disease. Neurobiol Aging 21(2):343–348

    Article  PubMed  CAS  Google Scholar 

  15. Wilcock GK, Birks J, Whitehead A, Evans SJ (2002) The effect of selegiline in the treatment of people with Alzheimer’s disease: a meta-analysis of published trials. Int J Geriatr Psychiatry 17(2):175–183

    Article  PubMed  CAS  Google Scholar 

  16. Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother 12(1):12–15

    Article  PubMed  CAS  Google Scholar 

  17. Antunes M, Biala G The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13 (2):93–110

  18. Wang D, Noda Y, Zhou Y, Mouri A, Mizoguchi H, Nitta A, Chen W, Nabeshima T (2007) The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25-35 i.c.v.-injected mice: involvement of dopaminergic systems. Neuropsychopharmacology 32(6):1261–1271

    Article  PubMed  CAS  Google Scholar 

  19. Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, Nabeshima Y, Nabeshima T (2003) Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. Faseb J 17(1):50–52

    PubMed  CAS  Google Scholar 

  20. Kamei H, Nagai T, Nakano H, Togan Y, Takayanagi M, Takahashi K, Kobayashi K, Yoshida S, Maeda K, Takuma K, Nabeshima T, Yamada K (2006) Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol Psychiatry 59(1):75–84

    Article  PubMed  CAS  Google Scholar 

  21. Roozendaal B, Castello NA, Vedana G, Barsegyan A, McGaugh JL (2008) Noradrenergic activation of the basolateral amygdala modulates consolidation of object recognition memory. Neurobiol Learn Mem 90(3):576–579

    Article  PubMed  CAS  Google Scholar 

  22. Matsumoto T, Suzuki O, Furuta T, Asai M, Kurokawa Y, Nimura Y, Katsumata Y, Takahashi I (1985) A sensitive fluorometric assay for serum monoamine oxidase with kynuramine as substrate. Clin Biochem 18(2):126–129

    Article  PubMed  CAS  Google Scholar 

  23. Sant’ Anna Gda S, Machado P, Sauzem PD, Rosa FA, Rubin MA, Ferreira J, Bonacorso HG, Zanatta N, Martins MA (2009) Ultrasound promoted synthesis of 2-imidazolines in water: a greener approach toward monoamine oxidase inhibitors. Bioorg Med Chem Lett 19(2):546–549

    Article  PubMed  Google Scholar 

  24. Villarinho JG, Oliveira SM, Silva CR, Cabreira TN, Ferreira J (2012) Involvement of monoamine oxidase B on models of postoperative and neuropathic pain in mice. Eur J Pharmacol 690(1–3):107–114

    Article  PubMed  CAS  Google Scholar 

  25. Tsunekawa H, Noda Y, Mouri A, Yoneda F, Nabeshima T (2008) Synergistic effects of selegiline and donepezil on cognitive impairment induced by amyloid beta (25–35). Behav Brain Res 190(2):224–232

    Article  PubMed  CAS  Google Scholar 

  26. Takahata K, Minami A, Kusumoto H, Shimazu S, Yoneda F (2005) Effects of selegiline alone or with donepezil on memory impairment in rats. Eur J Pharmacol 518(2–3):140–144

    Article  PubMed  CAS  Google Scholar 

  27. de Lima MN, Laranja DC, Caldana F, Bromberg E, Roesler R, Schroder N (2005) Reversal of age-related deficits in object recognition memory in rats with l-deprenyl. Exp Gerontol 40(6):506–511

    Article  PubMed  Google Scholar 

  28. Filip V, Kolibas E (1999) Selegiline in the treatment of Alzheimer’s disease: a long-term randomized placebo-controlled trial. Czech and slovak senile dementia of alzheimer type study group. J Psychiatry Neurosci 24(3):234–243

    PubMed  CAS  Google Scholar 

  29. Braak H, Braak E (1991) Neuropathological stageing of alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  PubMed  CAS  Google Scholar 

  30. Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52(6):1158–1165

    Article  PubMed  CAS  Google Scholar 

  31. Bevilaqua L, Ardenghi P, Schroder N, Bromberg E, Schmitz PK, Schaeffer E, Quevedo J, Bianchin M, Walz R, Medina JH, Izquierdo I (1997) Drugs acting upon the cyclic adenosine monophosphate/protein kinase a signalling pathway modulate memory consolidation when given late after training into rat hippocampus but not amygdala. Behav Pharmacol 8(4):331–338

    Article  PubMed  CAS  Google Scholar 

  32. Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD, Kandel ER (1999) Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci U S A 96(9):5280–5285

    Article  PubMed  CAS  Google Scholar 

  33. Ebadi M, Sharma S, Shavali S, El Refaey H (2002) Neuroprotective actions of selegiline. J Neurosci Res 67(3):285–289

    Article  PubMed  CAS  Google Scholar 

  34. Schulzer M, Mak E, Calne DB (1992) The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic. Ann Neurol 32(6):795–798

    Article  PubMed  CAS  Google Scholar 

  35. Paterson IA, Zhang D, Warrington RC, Boulton AA (1998) R-deprenyl and R-2-heptyl-N-methylpropargylamine prevent apoptosis in cerebellar granule neurons induced by cytosine arabinoside but not low extracellular potassium. J Neurochem 70(2):515–523

    Article  PubMed  CAS  Google Scholar 

  36. Kiray M, Uysal N, Sonmez A, Acikgoz O, Gonenc S (2004) Positive effects of deprenyl and estradiol on spatial memory and oxidant stress in aged female rat brains. Neurosci Lett 354(3):225–228

    Article  PubMed  CAS  Google Scholar 

  37. Thomas T, McLendon C, Thomas G (1998) L-deprenyl: nitric oxide production and dilation of cerebral blood vessels. NeuroReport 9(11):2595–2600

    Article  PubMed  CAS  Google Scholar 

  38. Zeng YC, Bongrani S, Bronzetti E, Cadel S, Ricci A, Valsecchi B, Amenta F (1995) Effect of long-term treatment with L-deprenyl on the age-dependent microanatomical changes in the rat hippocampus. Mech Ageing Dev 79(2–3):169–185

    Article  PubMed  CAS  Google Scholar 

  39. Magyar K, Haberle D (1999) Neuroprotective and neuronal rescue effects of selegiline: review. Neurobiology (Bp) 7(2):175–190

    CAS  Google Scholar 

  40. Pitsikas N, Rigamonti AE, Cella SG, Sakellaridis N, Muller EE (2005) The nitric oxide donor molsidomine antagonizes age-related memory deficits in the rat. Neurobiol Aging 26(2):259–264

    Article  PubMed  CAS  Google Scholar 

  41. Fin C, da Cunha C, Bromberg E, Schmitz PK, Bianchin M, Medina JH, Izquierdo I (1995) Experiments suggesting a role for nitric oxide in the hippocampus in memory processes. Neurobiol Learn Mem 63(2):113–115

    Article  PubMed  CAS  Google Scholar 

  42. Liu P, Smith PF, Appleton I, Darlington CL, Bilkey DK (2004) Potential involvement of NOS and arginase in age-related behavioural impairments. Exp Gerontol 39(8):1207–1222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil).

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel A. Rubin.

Additional information

Andréia M. Pazini and Guilherme M. Gomes have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazini, A.M., Gomes, G.M., Villarinho, J.G. et al. Selegiline Reverses Aβ25–35-Induced Cognitive Deficit in Male Mice. Neurochem Res 38, 2287–2294 (2013). https://doi.org/10.1007/s11064-013-1137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1137-6

Keywords

Navigation