Skip to main content

Advertisement

Log in

A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The current knowledge of the normal biochemistry of compounds that give rise to resonances in human brain proton magnetic resonance spectra measureable at readily available field strengths (i.e. ≤3 T) is reviewed. Molecules covered include myo- and scyllo-inositol, glycerophospho- and phospho-choline and choline, creatine and phosphocreatine, N-acetylaspartate, N-acetylaspartylglutamate, glutamate, glutamine, γ-aminobutyrate, glucose, glutathione and lactate. The factors which influence changes in the levels of these compounds are discussed. As most proton resonances in the brain at low field are derived from a combination of moieties whose biochemistry is complex and interrelated, an understanding of the mechanisms underlying why these species change is crucial to meaningful interpretation of human brain spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ASPA:

Aspartoacylase

Cho:

Choline-containing resonance

COSY:

Correlation spectroscopy

Cre:

Creatine-containing resonance

CRT:

Creatine transporter

fMRS:

Functional magnetic resonance spectroscopy

GABA:

γ-Aminobutyric acid

GABA(A)R:

GABA-A receptor

GABA(B)R:

GABA B receptor

GAMT:

Guanidinoacetate methyl transferase

GSH:

Glutathione

GSSG:

Oxidized glutathione

IQ:

Intelligence quotient

MEGA-PRESS:

Mescher–Garwood point resolved spectroscopy

NA:

N-Acetyl containing resonance

NAA:

N-Acetylaspartate

NAAG:

N-Acetylaspartylglutamate

NAT8L:

N-Acetyltransferase-8 like enzyme

NMDAR:

N-Methyl-d-aspartate receptor

MRS:

Magnetic resonance spectroscopy

PCr:

Phosphocreatine

PRESS:

Point-resolved spectroscopy

References

  1. Govindaraju V, Young K, Maudsley AA, Maudsley AA (2000) Proton NMR chemical shifts and coupling constant for brain metabolites. NMR Biomed 13:129–153

    CAS  PubMed  Google Scholar 

  2. Kreis R, Bolliger CS (2012) The need for updates of spin system parameters, illustrated for the case of γ-aminobutyric acid. NMR Biomed 25:1401–1403

    Google Scholar 

  3. Tosi MR, Fini G, Tinti A, Reggiani A, Tugnoli V (2002) Molecular characterisation of human healthy and neoplastic cerebral and renal tissues by in vitro H-1NMR spectroscopy. Int J Mol Med 9:299–310

    CAS  PubMed  Google Scholar 

  4. Kreis R (2004) Issues of spectral quality in clinical H-1-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381

    CAS  PubMed  Google Scholar 

  5. Mountford CE, Stanwell P, Lin A, Ramadan S, Ross B (2010) Neurospectroscopy: the past, present and future. Chem Rev 110:3060–3086

    CAS  PubMed  Google Scholar 

  6. Choi CH, Ghose S, Uh J, Pate A, Dimitrov IE, Lu HZ, Douglas D, Ganjil S (2010) Measurement of N-acetylaspartylglutamate in the human frontal brain by (1)H-MRS at 7 T. Magn Reson Med 64:1247–1251

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Frahm J, Michaelis T, Merboldt K-D, Hänicke W, Gyngell ML, Bruhn H (1991) On the N-acetyl methyl resonance in localised 1 h NMR spectra of human brain in vivo. NMR Biomed 4:201–204

    CAS  PubMed  Google Scholar 

  8. Pouwels PJW, Frahm J (1997) Differential distribution of NAA and NAAG in human brain as determined by quantitative localised proton MRS. NMR Biomed 10:73–79

    CAS  PubMed  Google Scholar 

  9. Brooks JCW, Roberts N, Kemp GJ, Gosney MA, Lye M, Whitehouse GH (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11:598–605

    CAS  PubMed  Google Scholar 

  10. Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Bloomer C (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Niwa M, Nitta A, Mizoguchi H, Ito Y, Noda Y, Nagai T, Nabeshima T (2007) A novel molecule “Shati” is involved in methamphetamine-induced hyperlocomotion, sensitization, and conditioned place preference. J Neurosci 27:7604–7615

    CAS  PubMed  Google Scholar 

  12. Wiame E, Tyteca D, Pierrot N, Collard F, Amyere M, Noel G, Desmedt J, Nassogne MC, Vikkula M, Octave JN, Vincent MF, Courtoy PJ, Boltshauser E, Van Schaftingen E (2010) Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochem J 425:127–136

    CAS  Google Scholar 

  13. Patel TB, Clark JB (1979) Synthesis of N-acetyl-l-aspartate by rat brain mitochondria and its involvement in mitochondrial cytosolic carbon transport. Biochem J 184:539–546

    CAS  PubMed  Google Scholar 

  14. Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A, Nabeshima T, Madhavarao CN, Namboodiri AMA (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res 1335:1–13

    CAS  PubMed  Google Scholar 

  15. Bhakoo KK, Pearce D (2000) In vitro expression of N-acetylaspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 74:254–262

    CAS  PubMed  Google Scholar 

  16. Tyson RL, Sutherland GR (1998) Labelling of N-acetylaspartate and N-acetylaspartylglutamate in rat neocortex, hippocampus and cerebellum from [1-13C]glucose. Neurosci Lett 251:181–184

    CAS  PubMed  Google Scholar 

  17. Neale JH, Bzdega T, Wroblewska B (2000) N-acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 75:443–452

    CAS  PubMed  Google Scholar 

  18. Klugmann M, Symes CW, Klaussner BK, Leichtlein CB, Serikawa T, Young D, During MJ (2003) Identification and distribution of aspartoacylase in the postnatal rat brain. Neuro Report 14:1837–1840

    CAS  Google Scholar 

  19. Moffett JR, Arun P, Ariyannur PS, Garbern JY, Jacobowitz DM, Namboodiri AMA (2011) Extensive aspartoacylase expression in the rat central nervous system. Glia 59:1414–1434

    PubMed Central  PubMed  Google Scholar 

  20. Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78:736–745

    CAS  PubMed  Google Scholar 

  21. Dadamo AF, Yatsu FM (1966) Acetate metabolism in nervous system. N-acetyl-l-aspartic acid and biosynthesis of brain lipids. J Neurochem 13:961–1000

    CAS  Google Scholar 

  22. Madhavarao CN, Arun P, Moffett JR, Szucs S, Surendran S, Matalon R, Garbern J, Hristova D, Johnson A, Jiang W, Namboodiri MAA (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci USA 102:5221–5226

    CAS  PubMed  Google Scholar 

  23. Hershfield JR, Madhavarao CN, Moffett JR, Benjamins JA, Garbern JY, Namboodiri A (2006) Aspartoacylase is a regulated nuclear-cytoplasmic enzyme. FASEB J 20:2139–2141

    CAS  PubMed  Google Scholar 

  24. Kumar S, Biancotti JC, Matalon R, de Vellis J (2009) Lack of aspartoacylase activity disrupts survival and differentiation of neural progenitors and oligodendrocytes in a mouse model of canavan disease. J Neurosci Res 87:3415–3427

    CAS  PubMed  Google Scholar 

  25. Francis JS, Strande L, Pu A, Leone P (2011) Endogenous aspartoacylase expression is responsive to glutamatergic activity in vitro and in vivo. Glia 59:1435–1446

    PubMed  Google Scholar 

  26. Ariyannur PS, Moffett JR, Madhavarao CN, Arun P, Vishnu N, Jacobowitz DM, Hallows WC, Denu JM, Namboodiri AMA (2010) Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. J Comp Neurol 518:2952–2977

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Francis JS, Strande L, Markov V, Leone P (2012) Aspartoacylase supports oxidative energy metabolism during myelination. J Cereb Blood Flow Metab 32:1725–1736

    Google Scholar 

  28. Moreno A, Ross BD, Blüml S (2001) Direct determination of the N-acetylaspartate synthesis rate in the human brain by 13C MRS and [1-13C]glucose infusion. J Neurochem 77:347–350

    CAS  PubMed  Google Scholar 

  29. Bates TE, Strangwald M, Keelan J, Davey GP, Munro PM, Clarke JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuro Rep 7:1397–1400

    CAS  Google Scholar 

  30. Xu S, Yang J, Shen J (2008) Measuring N-acetylaspartate synthesis in vivo using proton magnetic resonance spectroscopy. J Neurosci Meth 172:8–12

    CAS  Google Scholar 

  31. Gomez R, Behar KL, Watzl J, Weinzimer SA, Gulanski B, Sanacora G, Koretski J, Guidone E, Jiang L, Petrakis IL, Pittman B, Krystal JH, Mason GF (2012) Intravenous ethanol infusion decreases human cortical γ-aminobutyric acid and N-acetylaspartate as measured with proton magnetic resonance spectroscopy at 4 Tesla. Biol Psychiatr 71:239–246

    CAS  Google Scholar 

  32. Sacha P, Zamecnik J, Barinka C, Hlouchova K, Vicha A, Mlcochova P, Hilgert I, Eckschlager T, Konvalinka J (2007) Expression of glutamate carboxypeptidase II in human brain. Neuroscience 144:1361–1372

    CAS  PubMed  Google Scholar 

  33. Berger UV, Luthi-Carter R, Passani LA, Elkabes S, Black I, Konradi C, Coyle JT (1999) Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system. J Comp Neurosci 415:52–64

    CAS  Google Scholar 

  34. Fujita T, Katsukawa H, Yodoya E, Wada M, Shimada A, Okada N, Yamamoto A, Ganapathy V (2005) Transport characteristics of N-acetyl-l-aspartate in rat astrocytes: involvement of sodium-coupled high-affinity carboxylate transporter NaC3/NaDC3-mediated transport system. J Neurochem 93:706–714

    CAS  PubMed  Google Scholar 

  35. Yodoya E, Wada M, Shimada A, Katsukawa H, Okada N, Yamamoto A, Ganapathy V, Fujita T (2006) Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. J Neurochem 97:162–173

    CAS  PubMed  Google Scholar 

  36. Taylor DL, Davies SE, Obrenovitch TP, Urenjak J, Richards DA, Clark JB, Symon L (1994) Extracellular N-acetylaspartate in the rat brain: in vivo determination of basal levels and changes evoked by high K+. J Neurochem 62:2349–2355

    CAS  PubMed  Google Scholar 

  37. Rahn KA, Watkins CC, Alt J, Rais R, Stathis M, Grishkan I, Crainiceau CM, Pomper MG, Rojas C, Pletnikov MV, Calabresi PA, Brandt J, Barker PB, Slusher BS, Kaplin AI (2012) Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis. Proc Natl Acad Sci USA 109:20101–20106

    CAS  PubMed  Google Scholar 

  38. Gurkoff GG, Feng JF, Van KC, Izadi A, Ghiasvand R, Shahlaie K, Song M, Lowe DA, Zhou J, Lyeth BG (2013) NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia. Brain Res 1515:98–107

    CAS  PubMed  Google Scholar 

  39. Nadler JV, Cooper JR (1972) N-Acetyl-l-aspartic acid content of human neural tumours and bovine peripheral nervous tissues. J Neurochem 19:313–319

    CAS  PubMed  Google Scholar 

  40. Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetylaspartate in neurons, oligodendrocyte type-2 progenitors and immature oligodendrocytes in vitro. J Neurochem 59:55–61

    CAS  PubMed  Google Scholar 

  41. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural types. J Neurosci 13:981–989

    CAS  PubMed  Google Scholar 

  42. Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, Marie C (2001) N-acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415

    CAS  PubMed  Google Scholar 

  43. Jenkins BG, Klivenyi P, Kustermann E, Andreassen OA, Ferrante RJ, Rosen BR, Beal MF (2000) Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J Neurochem 74:2108–2119

    CAS  PubMed  Google Scholar 

  44. Rae C, Karmiloff-Smith A, Lee MA, Dixon RM, Grant J, Blamire AM, Thompson CH, Styles P, Radda GK (1998) Brain biochemistry in Williams syndrome: evidence for a role of the cerebellum in cognition? [see comments]. Neurology 51:33–40

    CAS  PubMed  Google Scholar 

  45. Cheng LL, Newell K, Mallory AE, Hyman BT, Gonzalez RG (2002) Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology. Magn Reson Imag 20:527–533

    Google Scholar 

  46. Cheng LL, Ma MJ, Becerra L, Ptak T, Tracey I, Lackney A, Gonzalez RG (1997) Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Nat Acad Sci USA 94:6408–6413

    CAS  PubMed  Google Scholar 

  47. Sager TN, Topp S, Torup L, Hanson LG, Egestad B, Moller A (2001) Evaluation of CA1 damage using single-voxel H-1-MRS and un-biased stereology: can non-invasive measures of N-acetyl-aspartate following global ischemia be used as a reliable measure of neuronal damage? Brain Res 892:166–175

    CAS  PubMed  Google Scholar 

  48. Baslow MH (2000) Functions of N-acetyl-l-aspartate and N-acetyl-l-aspartylglutamate in the vertebrate brain: role in glial cell-specific signalling. J Neurochem 75:453–459

    CAS  PubMed  Google Scholar 

  49. Bothwell JH, Rae C, Dixon RM, Styles P, Bhakoo KK (2001) Hypo-osmotic swelling activated release of organic osmolytes in brain slices—implications for brain oedema in vivo. J Neurochem 77:1632–1640

    CAS  PubMed  Google Scholar 

  50. Taylor DL, Davies SEC, Obrenovitch TP, Doheny MH, Patsalos PN, Clark JB, Symon L (1995) Investigation in the the role of N-acetylaspartate in cerebral osmoregulation. J Neurochem 65:275–281

    CAS  PubMed  Google Scholar 

  51. Baslow MH, Hrabe J, Guilfoyle DN (2007) Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex. J Mol Neurosci 32:235–245

    CAS  PubMed  Google Scholar 

  52. Baslow MH (2010) Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain’s “operating system”: how NAA metabolism supports meaningful intercellular frequency-encoded communications. Amino Acid 39:1139–1145

    CAS  Google Scholar 

  53. Mangia S, Tkac I (2008) Letter to the editor. J Mol Neurosci 35:245–246

    CAS  PubMed  Google Scholar 

  54. Nakada T (2010) Conversion of brain cytosol profile from fetal to adult type during the perinatal period: taurine-NAA exchange. Proc Jpn Acad Ser B-Phys Biol Sci 86:630–642

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Mersmann N, Tkachev D, Jelinek R, Roth PT, Mobius W, Ruhwedel T, Ruhle S, Weber-Fahr W, Sartorius A, Klugmann M (2011) Aspartoacylase-LacZ Knockin mice: an engineered model of canavan disease. PLoS One 6

  56. Irwan R, Sijens PE, Potze JH, Oudkerk M (2005) Correlation of proton MR spectroscopy and diffusion tensor imaging. Magn Reson Imag 23:851–858

    Google Scholar 

  57. Destefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721–727

    CAS  Google Scholar 

  58. Tonon C, Vetrugno R, Lodi R, Gallassi R, Provini F, Iotti S, Plazzi G, Montagna P, Lugaresi E, Barbiroli B (2007) Proton magnetic resonance spectroscopy study of brain metabolism in obstructive sleep apnoea syndrome before and after continuous positive airway pressure treatment. Sleep 30:305–311

    PubMed  Google Scholar 

  59. Ferini-Strambi L, Baietto C, Di Gioia MR, Castaldi P, Castronovo C, Zucconi M, Cappa SR (2003) Cognitive dysfunction in patients with obstructive sleep apnea (OSA): partial reversibility after continuous positive airway pressure (CPAP). Brain Res Bull 61:87–92

    CAS  PubMed  Google Scholar 

  60. Hashimoto T, Tayama M, Miyazaki M, Yoneda Y, Yoshimoto T, Harada M, Miyoshi H, Tanouchi M, Kuroda Y (1995) Reduced N-acetylaspartate in the brain observed on in vivo proton magnetic resonance spectroscopy in patients with mental retardation. Ped Neurol 13:205–208

    Google Scholar 

  61. Gadian DG, Isaacs EB, Cross JH, Connelly A, Jackson GD, King MD, Neville BGR, Varghakhadem F (1996) Lateralisation of brain function in childhood revealed by magnetic resonance spectroscopy. Neurology 46:974–977

    CAS  PubMed  Google Scholar 

  62. Jung RE, Brooks WM, Yeo RA, Chiulli SJ, Weers C, Sibbitt WL (1999) Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proc R Soc Lond B 266:1375–1379

    CAS  Google Scholar 

  63. Jung RE, Haier RJ, Yeo RA, Rowland LM, Petropoulos H, Levine AS, Sibbitt WL, Brooks WM (2005) Sex differences in N-acetylaspartate correlates of general intelligence: an H-1 MRS study of normal human brain. Neuroimage 26:965–972

    PubMed  Google Scholar 

  64. Jung RE, Haier RJ (2007) The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–187

    PubMed  Google Scholar 

  65. Rae C, Scott RB, Lee MA, Hines N, Paul C, Simpson JM, Karmiloff-Smith A, Anderson M, Styles P, Radda GK (2003) Brain bioenergetics and cognitive ability. Dev Neurosci 25:324–331

    CAS  PubMed  Google Scholar 

  66. Martin E, Capone A, Schneider J, Hennig J, Thiel T (2001) Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy? Ann Neurol 49:518–521

    CAS  PubMed  Google Scholar 

  67. Boltshauser E, Schmitt B, Wevers RA, Engelke U, Burlina AB, Burlina AP (2004) Follow-up of a child with hypoacetylaspartia. Neuropediatr 35:255–258

    CAS  Google Scholar 

  68. Furukawa-Hibi Y, Nitta A, Fukumitsu H, Somiya H, Toriumi K, Furukawa S, Nabeshima T, Yamada K (2012) Absence of SHATI/Nat8 l reduces social interaction in mice. Neurosci Lett 526:79–84

    CAS  PubMed  Google Scholar 

  69. Miller BL, Chang L, Booth R, Ernst T, Cornford M, Nikas D, McBride D, Jenden DJ (1996) In vivo 1H MRS: correlation with in vitro chemistry/histochemistry. Life Science 58:1929–1935

    CAS  Google Scholar 

  70. Barker PB, Breiter SN, Soher BJ, Chatham JC, Forder JR, Samphilipo MA, Magee CA, Anderson JH (1994) Quantitative proton spectroscopy of canine brain: in vivo and in vitro correlations. Magn Reson Med 32:157–163

    CAS  PubMed  Google Scholar 

  71. Blüml S, Seymour KJ, Ross BD (1999) Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled 31P MRS in in vivo human brain. Magn Reson Med 42:643–654

    PubMed  Google Scholar 

  72. Wurtman RJ (1992) Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci 15:117–122

    CAS  PubMed  Google Scholar 

  73. Löffelholz K, Klein J, Köppen A (1993) Choline, a precursor of acetylcholine and phospholipids in the brain. Prog Brain Res 98:197–200

    PubMed  Google Scholar 

  74. Zeisel SH (1991) Choline, an essential nutrient for humans. FASEB J 5:2093–2098

    CAS  PubMed  Google Scholar 

  75. Cornford EM, Braun LD, Oldendorf WH (1978) Carrier mediated blood-brain barrier transport of choline and certain choline analogues. J Neurochem 30:299–308

    CAS  PubMed  Google Scholar 

  76. Aquilonius S-M, Ceder G, Lying-Tunell U, Malmlund HO, Schuberth J (1975) The arteriovenous difference of choline across the brain of man. Brain Res 99:430–433

    CAS  PubMed  Google Scholar 

  77. Illingworth RD, Portman OW (1972) Uptake and metabolism of plasma lysophosphatidylcholine in vivo by brain of squirrel monkeys. Biochem J 130:557–1000

    CAS  PubMed  Google Scholar 

  78. Ansell GB, Spanner S (1971) Studies on origin of choline in brain of rat. Biochem J 122:741–1000

    CAS  PubMed  Google Scholar 

  79. Klein J, Koppen A, Loffelholz K, Schmitthenner J (1992) Uptake and metabolism of choline by rat-brain after acute choline administration. J Neurochem 58:870–876

    CAS  PubMed  Google Scholar 

  80. Stoll AL, Renshaw PF, de Micheli E, Wurtman RJ, Pillay SS, Cohen BM (1995) Choline ingestion increases the resonance of choline-containing compounds in human brain: an in vivo proton magnetic resonance study. Biol Psychiatr 37:170–174

    CAS  Google Scholar 

  81. Dechent P, Pouwels PJW, Frahm J (1999) Neither short-term nor long-term adminstration of oral choline alters metabolite concentrations in human brain. Biol Psychiatr 46:406–411

    CAS  Google Scholar 

  82. Tan J, Bluml S, Hoang T, Dubowitz D, Mevenkamp G, Ross BD (1998) Lack of effect of oral choline supplementation on the concentrations of choline metabolites in human brain. Magn Reson Med 39:1005–1010

    CAS  PubMed  Google Scholar 

  83. Babb SM, Ke Y, Lange N, Kaufman MJ, Renshaw PF, Cohen BM (2004) Oral choline increases choline metabolites in human brain. Psychiatr Res Neuroimag 130:1–9

    CAS  Google Scholar 

  84. Morley BJ, Fleck DL (1987) A time course and dose-response study of the regulation of brain nicotinic receptors by dietary choline. Brain Res 421:21–29

    CAS  PubMed  Google Scholar 

  85. Hirsch MJ, Wurtman RJ (1978) Lecithin consumption increases acetylcholine concentrations in rat brain and adrenal gland. Science 202:223–225

    CAS  PubMed  Google Scholar 

  86. Wang XC, Du XX, Tian Q, Wang JZ (2008) Correlation between choline signal intensity and acetylcholine level in different brain regions of rat. Neurochem Res 33:814–819

    CAS  PubMed  Google Scholar 

  87. Poly C, Massaro JM, Seshadri S, Wolf PA, Cho EY, Krall E, Jacques PF, Au R (2011) The relation of dietary choline to cognitive performance and white-matter hyper intensity in the Framingham offspring cohort. Am J Clin Nutr 94:1584–1591

    CAS  PubMed  Google Scholar 

  88. Yamamura HI, Snyder SH (1972) Choline: high-affinity uptake by rat brain synaptosomes. Science 178:626–628

    CAS  PubMed  Google Scholar 

  89. Diamond I, Kennedy EP (1969) Carrier-mediated transport of choline into synaptic nerve endings. J Biol Chem 244:3258–3263

    CAS  PubMed  Google Scholar 

  90. Kuharm MJ, Murrin LC (1978) Sodium-dependent, high affinity choline uptake. J Neurochem 30:15–21

    Google Scholar 

  91. Tucek S (1984) Problems in the organization and control of acetylcholine synthesis in brain neurons. Prog Biophys Mol Biol 44:1–46

    CAS  PubMed  Google Scholar 

  92. Scremin OU, Jenden DJ (1993) Acetylcholine turnover and release: the influence of energy metabolism and systemic choline availability. Prog Brain Res 98:191–195

    CAS  PubMed  Google Scholar 

  93. Michel V, Yuan ZF, Ramsubir S, Bakovic M (2006) Choline transport for phospholipid synthesis. Exp Biol Med 231:490–504

    CAS  Google Scholar 

  94. Aquilonius S-M, Windbladh B (1972) Cerebrospinal fluid clearance of choline and some other amines. Acta Physiol Scand 85:78–90

    CAS  PubMed  Google Scholar 

  95. Mann SP, Hebb C (1977) Free choline in the brain of the rat. J Neurochem 28:241–244

    CAS  PubMed  Google Scholar 

  96. Zeisel SH (2000) Choline: needed for normal development of memory. J Am Coll Nutr 19:528S–531S

    CAS  PubMed  Google Scholar 

  97. Dainous F, Freysz L, Mozzi R, Dreyfus H, Louis JC, Porcellati G, Massarelli R (1982) Synthesis of choline phospholipids in neuronal and glial cell cultures by the methylation pathway. FEBS Lett 146:221–223

    CAS  PubMed  Google Scholar 

  98. Lakher M, Wurtman RJ (1987) In vivo synthesis of phosphatidylcholine in rat brain via the phospholipid methylation pathway. Brain Res 419:131–140

    CAS  PubMed  Google Scholar 

  99. Jenden DJ (1991) The metabolism of choline. Bull Clin Neurosci 55:99–106

    Google Scholar 

  100. Gibson GE, Blass JP (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycaemia. J Neurochem 27:37–42

    CAS  PubMed  Google Scholar 

  101. Sartorius A, Schloss P, Vollmayr B, Ende G, Neumann-Haefelin C, Hoehn M, Henn FA (2006) Correlation between MR-spectroscopic rat hippocampal choline levels and phospholipase A2. World J Biol Psychiatr 7:246–250

    Google Scholar 

  102. Boulanger Y, Labelle M, Khiat A (2000) Role of phospholipase A(2) on the variations of the choline signal intensity observed by H-1 magnetic resonance spectroscopy in brain diseases. Brain Res Rev 33:380–389

    CAS  PubMed  Google Scholar 

  103. Bhakoo KK, Williams SR, Florian CL, Land H, Noble M (1996) Immortalisation and transformation are associated with specific alterations in choline metabolism. Cancer Res 56:4630–4635

    CAS  PubMed  Google Scholar 

  104. Laule C, Vavasour IM, Kolind SH, Li DKB, Traboulsee TL, Moore GRW, MacKay AL (2007) Magnetic resonance imaging of myelin. Neurotherapeutics 4:460–484

    CAS  PubMed  Google Scholar 

  105. Martin PR, Gibbs SJ, Nimmerrichter AA, Riddle WR, Welch LW, Willcott MR (1995) Brain proton magnetic resonance spectroscopy studies in recently abstinent alcoholics. Alcohol Clin Exp Res 19:1078–1082

    CAS  PubMed  Google Scholar 

  106. Jung RE, Yeo RA, Love TM, Petropoulos H, Sibbitt WL, Brooks WM (2002) Biochemical markers of mood: a proton magnetic resonance study of normal human brain. Biol Psychiatr 51:224–229

    CAS  Google Scholar 

  107. Craig MC, Daly EM, O’Gorman R, Rymer J, Lythgoe D, Ng G, Simmons A, Maki PM, Murphy DGM (2007) Effects of acute ovarian hormone suppression on the human brain: an in vivo H-1 MRS study. Psychoneuroendocrinology 32:1128–1132

    CAS  PubMed  Google Scholar 

  108. Xiong QA, Du F, Zhu XH, Zhang PY, Suntharalingam P, Ippolito J, Kamdar FD, Chen W, Zhang JY (2011) ATP production rate via creatine kinase or ATP synthase in vivo a novel superfast magnetization saturation transfer method. Circ Res 108:U265–U653

    Google Scholar 

  109. Chen W, Zhu X-H, Adriany G, Ugurbil K (1997) Increase of creatine kinase activity in the visual cortex of human brain during visual stimulation: a 31P NMR magnetization transfer study. Magn Reson Med 38:551–557

    CAS  PubMed  Google Scholar 

  110. Kruiskamp MJ, van Vliet G, Nicolay K (2000) 1H and 31P magnetization transfer studies of hindleg muscle in wild-type and creatine kinase-deficient mice. Magn Reson Med 43:657–664

    CAS  PubMed  Google Scholar 

  111. Ke Y, Cohen BM, Lowen S, Hirashima F, Nassar L, Renshaw PF (2002) Biexponential transverse relaxation (T2) of the proton MRS creatine resonance in human brain. Magn Reson Med 47:232–238

    CAS  PubMed  Google Scholar 

  112. Simister RJ, McLean MA, Salmenpera TM, Barker GJ, Duncan JS (2008) The effect of epileptic seizures on proton MRS visible neurochemical concentrations. Epilepsy Res 81:36–43

    CAS  PubMed  Google Scholar 

  113. Dreher W, Norris DG, Leibfritz D (1994) Magnetization transfer affects the proton creatine/phosphocreatine signal intensity: in vivo demonstration in the rat brain. Magn Reson Med 31:81–84

    CAS  PubMed  Google Scholar 

  114. Helms G, Frahm J (1999) Magnetization transfer attenuation of creatine resonances in localised proton MRS of human brain in vivo. NMR Biomed 12:490–494

    CAS  PubMed  Google Scholar 

  115. Kruiskamp MJ, de Graaf RA, van der Grond J, Lamerichs R, Nicolay K (2001) Magnetic coupling between water and creatine protons in human brain and skeletal muscle, as measured using inversion transfer H-1-MRS. NMR Biomed 14:1–4

    CAS  PubMed  Google Scholar 

  116. Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) An assessment of the effects of sample ischaemia and spinning time on the metabolic profile of brain tumour biopsy specimens as determined by high-resolution magic angle spinning H-1 NMR. NMR Biomed 21:1138–1147

    CAS  PubMed  Google Scholar 

  117. Dechent P, Pouwels PJW, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277:R698–R704

    CAS  PubMed  Google Scholar 

  118. Braissant O, Henry HML, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Mol Brain Res 86:193–201

    CAS  PubMed  Google Scholar 

  119. Defalco AJ, Davies RK (1961) The synthesis of creatine by the brain of the intact rat. J Neurochem 7:308–312

    CAS  PubMed  Google Scholar 

  120. Dringen R, Verleysdonk S, Hamprecht B, Wilker W, Leibfritz D, Brand A (1998) Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine and glutathione. J Neurochem 70:835–840

    CAS  PubMed  Google Scholar 

  121. Braissant O, Henry H (2008) AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review. J Inherit Metab Dis 31:230–239

    CAS  PubMed  Google Scholar 

  122. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1212

    CAS  PubMed  Google Scholar 

  123. Stöckler S, Hanefeld F, Frahm J (1996) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348:789–790

    PubMed  Google Scholar 

  124. Valayannopoulos V, Boddaert N, Mention K, Touati G, Barbier V, Chabli A, Sedel F, Kaplan J, Dufier JL, Seidenwurm D, Rabier D, Saudubray JM, de Lonlay P (2009) Secondary creatine deficiency in ornithine delta-aminotransferase deficiency. Mol Genet Metab 97:109–113

    CAS  PubMed  Google Scholar 

  125. Salomons GS, van Dooren SJM, Verhoeven NM, Cecil KM, Ball WS, Degrauw TJ, Jakobs C (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68:1497–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Chilosi A, Leuzzi V, Battini R, Tosetti M, Ferretti G, Comparini A, Casarano M, Moretti E, Alessandri MG, Bianchi MC, Cioni G (2008) Treatment with l-arginine improves neuropsychological disorders in a child with Creatine transporter defect. Neurocase 14:151–161

    PubMed  Google Scholar 

  127. de Kamp JMV, Pouwels PJW, Aarsen FK, ten Hoopen LW, Knol DL, de Klerk JB, de Coo IF, Huijmans JGM, Jakobs C, van der Knaap MS, Salomons GS, Mancini GMS (2012) Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. J Inherit Metab Dis 35:141–149

    PubMed Central  PubMed  Google Scholar 

  128. Fons C, Sempere A, Arias A, Lopez-Sala A, Poo P, Pineda M, Mas A, Vilaseca MA, Salomons GS, Ribes A, Artuch R, Campistol J (2008) Arginine supplementation in four patients with X-linked creatine transporter defect. J Inherit Metab Dis 31:724–728

    CAS  PubMed  Google Scholar 

  129. Valayannopoulos V, Boddaert N, Chabli A, Barbier V, Desguerre I, Philippe A, Afenjar A, Mazzuca M, Cheillan D, Munnich A, de Keyzer Y, Jakobs C, Salomons GS, de Lonlay P (2012) Treatment by oral creatine, l-arginine and l-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis 35:151–157

    CAS  PubMed  Google Scholar 

  130. Kurosawa Y, DeGrauw TJ, Lindquist DM, Blanco VM, Pyne-Geithman GJ, Daikoku T, Chambers JB, Benoit SC, Clark JF (2012) Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency. J Clin Invest 122:2837–2846

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Möller A, Hamprecht B (1989) Creatine transport in cultured cells of rat and mouse brain. J Neurochem 52:544–550

    PubMed  Google Scholar 

  132. Braissant O, Henry H (2007) AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review. In annual symposium of the society-for-the-study-of-inborn-errors-of-metabolism. Hamburg, Germany: Springer

  133. Braissant O, Beard E, Torrent C, Henry H (2010) Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes. Neurobiol Dis 37:423–433

    CAS  PubMed  Google Scholar 

  134. Dai WX, Vinnakota S, Qian XJ, Kunze DL, Sarkar HK (1999) Molecular characterization of the human CRT-1 creatine transporter expressed in xenopus oocytes. Arch Biochem Biophys 36:75–84

    Google Scholar 

  135. Dodd JR, Birch NP, Waldvogel HJ, Christie DL (2010) Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons. J Neurochem 115:684–693

    CAS  PubMed  Google Scholar 

  136. Mak CSW, Waldvogel HJ, Dodd JR, Gilbert RT, Lowe MTJ, Birch NP, Faull RLM, Christie DL (2009) Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 163:571–585

    CAS  PubMed  Google Scholar 

  137. Pyne-Geithman GJ, de Grauw TJ, Cecil KM, Chuck G, Lyons MA, Ishida Y, Clark JF (2004) Presence of normal creatine in the muscle of a patient with a mutation in the creatine transporter: a case study. Mol Cell Biochem 262:35–39

    CAS  PubMed  Google Scholar 

  138. Nabuurs C, Romeijn M, Veltien A, Kan H, Isbrandt D, Heerschap A (2009) Creatine deficiency, uptake and breakdown studied in brain and muscle of Arginine:glycine Amidinotransferase deficient mice. Proc Int Soc Magn Reson Med 19:1026

    Google Scholar 

  139. Wilkinson ID, Mitchel N, Breivik S, Greenwood P, Griffiths PD, Winter EM, Van Beek EJR (2006) Effects of creatine supplementation on cerebral white matter in competitive sportsmen. Clin J Sport Med 16:63–67

    PubMed  Google Scholar 

  140. McLean MA, Woermann FG, Barker GJ, Duncan JS (2000) Quantitative analysis of short echo time 1HMRSI of cerebral gray and white matter. Magn Reson Med 44:401–411

    CAS  PubMed  Google Scholar 

  141. Pouwels PJW, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localised proton MRS. Magn Reson Med 39:53–60

    CAS  PubMed  Google Scholar 

  142. Kaldis P, Hemmer W, Zanolla E, Holtzman D, Walliman T (1996) ‘Hot spots’ of creatine kinase localisation in brain: cerebellum, hippocampus and choroid plexus. Dev Neurosci 18:542–554

    CAS  PubMed  Google Scholar 

  143. Sartorius A, Lugenbiel P, Mahlstedt MM, Ende G, Schloss P, Vollmayr B (2008) Proton magnetic resonance spectroscopic creatine correlates with creatine transporter protein density in rat brain. J Neurosci Meth 172:215–219

    CAS  Google Scholar 

  144. Hertz L, Drejer J, Schousboe A (1988) Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary culture. Neurochem Res 13:605–610

    CAS  PubMed  Google Scholar 

  145. Brand A, Richter-Lansberg C, Richter-Lansberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    CAS  PubMed  Google Scholar 

  146. Lowe MTJ, Kim EH, Faull RLM, Christie DL, Waldvogel HJ (2013) Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab 33:1295–1306

    CAS  PubMed  Google Scholar 

  147. Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20:144–160

    PubMed  Google Scholar 

  148. Walliman T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzyme in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis. Biochem J 281:21–40

    Google Scholar 

  149. Rango M, Castelli A, Scarlato G (1997) Energetics of 3.5 s neural activation in humans: a 31P spectroscopy study. Magn Reson Med 38:878–883

    CAS  PubMed  Google Scholar 

  150. Kemp GJ (2000) Non-invasive methods for studying brain energy metabolism: what they show and what it means. Dev Neurosci 22:418–428

    CAS  PubMed  Google Scholar 

  151. Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW (1992) Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 12:584–592

    CAS  PubMed  Google Scholar 

  152. Cox DWG, Morris PG, Feeney F, Bachelard HS (1983) 31P MRS studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro. Biochem J 212:365–370

    CAS  PubMed  Google Scholar 

  153. Sauter A, Rudin M (1993) Determination of creatine kinase kinetic parameters in rat brain by magnetization transfer. Correlation with brain function. J Biol Chem 268:13166–13171

    CAS  PubMed  Google Scholar 

  154. t’Zandt HJAI, Jost C, Oerlemans F, Klomp DWJ, Wieringa B, Heerschap A (2000) Brains of creatine kinase deficient mice lack phosphocreatine and exhibit an increased NAA level. Proc Int Soc Magn Reson Med 8:174

    Google Scholar 

  155. Kekelidze T, Khait I, Togliatti A, Benzecry JM, Wieringa B, Holtzman D (1998) Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. Wiley-Liss, Los Angeles

    Google Scholar 

  156. de Groof AJC, Oerlemans FTJJ, Jost CR, Wieringa B (2001) Changes in glycolytic network and mitochondrial design in creatine kinase-deficient muscles. Muscle Nerve 24:1188–1196

    PubMed  Google Scholar 

  157. Rae C, Bartlett D, Yang Q, Walton D, Denotti A, Sachinwalla T, Grunstein RR (2009) Dynamic changes in brain bioenergetics during obstructive sleep apneoa. J Cereb Blood Flow Metab 29:1421–1428

    CAS  PubMed  Google Scholar 

  158. Shoubridge EA, Briggs RW, Radda GK (1982) P-31 NMR saturation transfer measurements of the steady-state rates of creatine kinase and ATP synthetase in the rat brain. FEBS Lett 140:288–292

    CAS  Google Scholar 

  159. Holtzman D, Brown M, Ogorman E, Allred E, Wallimann T (1998) T Brain ATP metabolism in hypoxia resistant mice fed guanidinopropionic acid. Dev Neurosci 20:469–477

    CAS  PubMed  Google Scholar 

  160. Holtzman D, Meyers R, Ogorman E, Khait I, Walliman T, Allred E, Jensen F (1997) In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog. Am J Physiol 41:C1567–C1577

    Google Scholar 

  161. Saks VA, Kongas O, Vendelin M, Kay L (2000) Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Acta Physiol Scand 168:635–641

    CAS  PubMed  Google Scholar 

  162. Monge C, Beraud N, Kuznetsov AV, Rostovtseva T, Sackett D, Schlattner U, Vendelin M, Saks VA (2008) Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase. Mol Cell Biochem 318:147–165

    CAS  PubMed  Google Scholar 

  163. Yoshizaki K, Watari H, Radda GK (1990) Role of phosphocreatine in energy-transport in skeletal muscle of bullfrog studied by P-31 NMR. Biochem Biophys Acta 1051:144–150

    CAS  PubMed  Google Scholar 

  164. Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK (1998) Theoretical modelling of some spatial and temporal aspects of the mitochondrion creatine kinase myofibril system in muscle. Mol Cell Biochem 184:249–289

    CAS  PubMed  Google Scholar 

  165. Heilig CW, Stromski ME, Blumenfield JD, Lee JP, Gullans SR (1989) Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol 257:F1108–F1116

    CAS  PubMed  Google Scholar 

  166. Miller TJ, Hanson RD, Yancey PH (2000) Developmental changes in organic osmolytes in prenatal and postnatal rat tissues. Comp Biochem Physiol A 125:45–56

    CAS  Google Scholar 

  167. Bothwell JH, Styles P, Bhakoo KK (2002) Swelling-activated taurine and creatine effluxes from rat cortical astrocytes are pharmacologically distinct. J Membr Biol 185:157–164

    CAS  PubMed  Google Scholar 

  168. Michaelis T, Wick M, Fujimori H, Matsumara A, Frahm J (1999) Proton MRS of oral creatine supplementation in rats. Cerebral metabolite concentration and ischemic challenge. NMR Biomed 12:309–314

    CAS  PubMed  Google Scholar 

  169. Juhn MS, Tarnopolsky M (1998) Potential side effects of oral creatine supplementation: a critical review. Clin J Sport Med 8:298–304

    CAS  PubMed  Google Scholar 

  170. Wyss M, Schulze A (2002) Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112:243–260

    CAS  PubMed  Google Scholar 

  171. Watanabe A, Kato N, Kato T (2002) Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res 42:279–285

    CAS  PubMed  Google Scholar 

  172. Rae C, Digney AL, McEwan SR, Bates TC (2003) Oral creatine monohydrate supplementation improves cognitive performance; a placebo-controlled, double blind, cross-over trial. Proc R Soc Lond B 279:2147–2150

    Google Scholar 

  173. Hammett ST, Wall MB, Edwards TC, Smith AT (2010) Dietary supplementation of creatine monohydrate reduces the human fMRI BOLD signal. Neurosci Lett 479:201–205

    CAS  PubMed  Google Scholar 

  174. Almeida LS, Salomons GS, Hogenboom R, Jakobs C, Schoffelmeer ANM (2006) Exocytotic release of creatine in rat brain. Synapse 60:118–123

    CAS  PubMed  Google Scholar 

  175. Koga Y, Takahashi H, Oikawa D, Tachibana T, Denbow DM, Furuse M (2005) Brain creatine functions to attenuate acute stress responses through gabaergic system in chicks. Neuroscience 132:65–71

    CAS  PubMed  Google Scholar 

  176. de Deyn PP, Macdonald RL (1990) Guanidino compounds that are increased in cerebrospinal fluid and brain of uremic patients inhibit GABA and glycine responses on mouse neurons in cell culture. Ann Neurol 28:627–633

    PubMed  Google Scholar 

  177. Neu A, Neuhoff H, Trube G, Fehr S, Ullrich K, Roeper J, Isbrandt D (2002) Activation of GABAA receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol Dis 11:298–307

    CAS  PubMed  Google Scholar 

  178. Chebib M, Gavande N, Wong KY, Park A, Premoli I, Mewett KN, Allan RD, Duke RK, Johnston GAR, Hanrahan JR (2009) Guanidino acids act as rho 1 GABA(C) receptor antagonists. Neurochem Res 34:1704–1711

    CAS  PubMed  Google Scholar 

  179. Royes LF, Fighera MR, Furian AF, Oliveira MS, Fiorenza NG, Ferreira J, da Silva AC, Priel MR, Ueda ES, Calixto JB, Cavalheiro EA, Mello CF (2008) Neuromodulatory effect of creatine on extracellular action potentials in rat hippocampus: role of NMDA receptors. Neurochem Int 53:33–37

    CAS  PubMed  Google Scholar 

  180. Oliveira MS, Furian AF, Fighera MR, Fiorenza NG, Ferreira J, Rubin MA, Mello CF, Royes LFF (2008) The involvement of the polyamines binding sites at the NMDA receptor in creatine-induced spatial learning enhancement. Behav Brain Res 187:200–204

    CAS  PubMed  Google Scholar 

  181. Genius J, Geiger J, Bender A, Moller H-J, Klopstock T, Rujescu D (2012) Creatine protects against excitotoxicity in an in vitro model of neurodegeneration. PLoS ONE 7:e30554

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Andres RH, Ducraya AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76:329–343

    CAS  PubMed  Google Scholar 

  183. Jackson MC, Lenney JF (1996) The distribution of carnosine and related dipeptides in rat and human tissues. Inflamm Res 45:132–135

    CAS  PubMed  Google Scholar 

  184. Petroff OAC, Hyder F, Rothman DL, Mattson RH (2000) Effects of gabapentin on brain GABA, homocarnosine and pyrrolidinone in epilepsy patients. Epilepsia 41:675–680

    CAS  PubMed  Google Scholar 

  185. Keltner JR, Wald LL, Christensen JD, Maas LC, Moore CM, Cohen BM, Renshaw PF (1996) A technique for detecting GABA in the human brain with PRESS localization and optimized refocusing spectral editing radiofrequency pulses. Magn Reson Med 36:458–461

    CAS  PubMed  Google Scholar 

  186. Rothman DL, Behar KL, Hetherington HP, Shulman RG (1984) Homonuclear H1 double resonance difference spectroscopy of the rat brain in vivo. Proc Nat Acad Sci United States Am-Biol Sci 81:6330–6334

    CAS  Google Scholar 

  187. Rothman DL, Petroff OAC, Behar KL, Mattson RH (1993) Localised 1H NMR measurements of GABA levels in human brain in vivo. Proc Nat Acad Sci USA 90:5662–5666

    CAS  PubMed  Google Scholar 

  188. Bogner W, Gruber S, Doelken M, Stadlbauer A, Ganslandt O, Boettcher U, Trattnig S, Doerfler A, Stefan H, Hammen T (2010) In vivo quantification of intracerebral GABA by single-voxel (1)H-MRS-How reproducible are the results? Eur J Radiol 73:526–531

    CAS  PubMed  Google Scholar 

  189. O’Gorman RL, Michels L, Edden RA, Murdoch JB, Martin E (2011) In vivo detection of GABA and glutamate with MEGA–PRESS: reproducibility and gender effects. J Magn Reson Imag 33:1262–1267

    Google Scholar 

  190. McLean MA, Busza AL, Wald LL, Simister RJ, Barker GJ, Williams SR (2002) In vivo GABA+ measurement at 1.5 T using a PRESS-localized double quantum filter. Magn Reson Med 48:233–241

    CAS  PubMed  Google Scholar 

  191. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272

    CAS  PubMed  Google Scholar 

  192. Napolitano A, Kockenberger W, Auer DP (2013) Reliable gamma aminobutyric acid measurement using optimised PRESS at 3T. Magn Reson Med 69:1523–1528

    Google Scholar 

  193. Thomas MA, Hattori N, Umeda M, Sawada T, Naruse S (2003) Evaluation of two-dimensional L-COSY and PRESS using a 3T MRI scanner: from phantoms to human brain in vivo. NMR Biomed 16:245–251

    CAS  PubMed  Google Scholar 

  194. Thomas MA, Yue K, Binesh N, Davanzo P, Kumar A, Siegel B, Frye M, Curran J, Lufkin R, Martin P, Guze B (2001) Localised two-dimensional shift correlated MR spectroscopy of human brain. Magn Reson Med 46:58–67

    CAS  PubMed  Google Scholar 

  195. Choi CH, Coupland NJ, Hanstock CC, Ogilvie CJ, Higgins ACM, Gheorghiu D, Allen PS (2005) Brain gamma-aminobutyric acid measurement by proton double-quantum filtering with selective J rewinding. Magn Reson Med 54:272–279

    CAS  PubMed  Google Scholar 

  196. Choi IY, Lee SP, Merkle H, Shen J (2006) In vivo detection of gray and white matter differences in GABA concentration in the human brain. Neuroimage 33:85–93

    PubMed  Google Scholar 

  197. Evans CJ, McGonigle DJ, Edden RAE (2010) Diurnal stability of gamma-aminobutyric acid concentration in visual and sensorimotor cortex. J Magn Reson Imag 31:204–209

    Google Scholar 

  198. Gao F, Edden RA, Li M, Puts NA, Wang G, Liu C, Zhao B, Wang H, Bai X, Zhao C, Wang X, Barker PB (2013) Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage 78:75–82

    CAS  PubMed  Google Scholar 

  199. Patel AB, Rothman DL, Cline GW, Behar KL (2001) Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition. Brain Res 919:207–220

    CAS  PubMed  Google Scholar 

  200. Paulsen RE, Odden E, Fonnum F (1988) Importance of glutamine for gamma-aminobutyric acid synthesis in rat neostriatum in vivo. J Neurochem 13:637–641

    CAS  Google Scholar 

  201. Rae C, Hare N, Bubb WA, McEwan SR, Bröer A, McQuillan JA, Balcar VJ, Conigrave AD, Bröer S (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 85:503–514

    CAS  PubMed  Google Scholar 

  202. Tapia R, González RM (1978) Glutamine and glutamate as precursors of the releasable pool of GABA in brain cortex slices. Neurosci Lett 10:165–169

    CAS  PubMed  Google Scholar 

  203. Jackson MC, Scollard DM, Mack RJ, Lenney JF (1994) Localization of a novel pathway for the liberation of GABA in the human CNS. Brain Res Bull 33:379–385

    CAS  PubMed  Google Scholar 

  204. Seiler N (2004) Catabolism of polyamines. Amino Acid 26:217–233

    CAS  Google Scholar 

  205. Heja L, Nyitrai G, Kekesi O, Dobolyi A, Szabo P, Fiath R, Ulbert I, Pal-Szenthe B, Palkovits M,Kardos J (2012) Astrocytes convert network excitation to tonic inhibition of neurons. Bmc Biol 10:26

    Google Scholar 

  206. Dericioglu N, Garganta CL, Petroff OA, Mendelsohn D, Williamson A (2008) Blockade of GABA synthesis only affects neural excitability under activated conditions in rat hippocampal slices. Neurochem Int 53:22–32

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Hanstock CC, Coupland NJ, Allen PS (2002) GABA X-2 multiplet measured pre- and post administration of vigabatrin in human brain. Magn Reson Med 48:617–623

    CAS  PubMed  Google Scholar 

  208. Rae C, Nasrallah FA, Griffin JL, Balcar VJ (2009) Now I know my ABC. A systems neurochemistry and functional metabolomic approach to understanding the GABAergic system. J Neurochem 109(Suppl 1):109–116

    CAS  PubMed  Google Scholar 

  209. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    CAS  PubMed  Google Scholar 

  210. Nasrallah F, Griffin JL, Balcar VJ, Rae C (2009) Understanding your inhibitions. Effects of GABA and GABAA receptors on brain cortical metabolism. J Neurochem 108:57–71

    CAS  PubMed  Google Scholar 

  211. Nasrallah F, Griffin JL, Balcar VJ, Rae C (2007) Understanding your inhibitions. Modulation of brain cortical metabolism by GABA-B receptors. J Cereb Blood Flow Metab 27:1510–1520

    CAS  PubMed  Google Scholar 

  212. Möhler H (2006) GABAA receptor diversity and pharmacology. Cell Tissue Res 326:505–516

    PubMed  Google Scholar 

  213. Petroff OAC, Behar KL, Mattson RH, Rothman DL (1996) Human brain gamma-aminobutyric acid levels and seizure control following initiation of vigabatrin therapy. J Neurochem 67:2399–2404

    CAS  PubMed  Google Scholar 

  214. Cavelier P, Hamann V, Rossi D, Mobbs P, Attwell D (2005) Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog Biophys Mol Biol 87:3–16

    CAS  PubMed  Google Scholar 

  215. Schousboe A (2000) Pharmacological and functional characterisation of astrocytic GABA transport: a short review. Neurochem Res 25:1241–1244

    CAS  PubMed  Google Scholar 

  216. Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, Schousboe A (1999) Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol 375:367–374

    CAS  PubMed  Google Scholar 

  217. Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 90:1363–1374

    CAS  PubMed  Google Scholar 

  218. Yasumi M, Sato K, Shimada S, Nishimura M, Tohyama M (1997) Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: comparison with glutamic acid decarboxylase(67)(GAD(67))mRNA localization. Mol Brain Res 44:205–218

    CAS  PubMed  Google Scholar 

  219. Bernstein EM, Quick MW (1999) Regulation of γ-aminobutyric acid (GABA) transporters by extracellular GABA. J Biol Chem 274:889–895

    CAS  PubMed  Google Scholar 

  220. Jackson MF, Esplin B, Capek R (2000) Reversal of the activity-dependent suppression of GABA-mediated inhibition in hippocampal slices from gamma-vinyl GABA (vigabatrin)-pretreated rats. Neuropharmacol 39:65–74

    CAS  Google Scholar 

  221. Wu Y, Wang W, Richerson GB (2003) Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 89:2021–2034

    CAS  PubMed  Google Scholar 

  222. Wu YM, Wang WG, Diez-Sampedro A, Richerson GB (2007) Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56:851–865

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Puts NAJ, Edden RAE (2012) In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog NMR Spect 60:29–41

    CAS  Google Scholar 

  224. Floyer-Lea A, Wylezinska M, Kincses T, Matthews PM (2005) Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol 95:1639–1644

    PubMed  Google Scholar 

  225. Sumner P, Edden RAE, Bompas A, Evans CJ, Singh KD (2010) More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat Neurosci 13:825–827

    CAS  PubMed  Google Scholar 

  226. Boy F, Evans CJ, Edden RAE, Singh KD, Husain M, Sumner P (2010) Individual differences in subconscious motor control predicted by GABA concentration in SMA. Curr Biol 20:1779–1785

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Henderson LA, Peck CC, Petersen ET, Rae CD, Youssef AM, Reeves JM, Wilcox SL, Akhter R, Murray GM, Gustin SM (2013) Chronic pain: lost inhibition? J Neurosci 33:7574–7582

    CAS  PubMed  Google Scholar 

  228. Edden RAE, Muthukumaraswamy SD, Freeman TCA, Singh KD (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 29:15721–15726

    CAS  PubMed  Google Scholar 

  229. Marenco S, Savostyanova AA, van der Veen JW, Geramita M, Stern A, Barnett AS, Kolachana B, Radulescu E, Zhang FY, Callicott JH, Straub RE, Shen J, Weinberger DR (2010) Genetic Modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychpharmacol 35:1708–1717

    CAS  Google Scholar 

  230. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10:1515–1517

    CAS  PubMed  Google Scholar 

  231. Donahue MJ, Near J, Blicher JU, Jezzard P (2010) Baseline GABA concentration and fMRI response. Neuroimage 53:392–398

    CAS  PubMed  Google Scholar 

  232. Chatton JY, Pellerin L, Magistretti PJ (2003) GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci USA 100:12456–12461

    CAS  PubMed  Google Scholar 

  233. Ackermann RF, Finch DM, Babb TL, Engel J (1984) Increased glucose-metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J Neurosci 4:251–264

    CAS  PubMed  Google Scholar 

  234. Palacios JM, Kuhar MJ, Rapoport SI, London ED (1982) Effects of γ-aminobutyric acid agonist and antagonist drugs on local cerebral glucose utilization. J Neurosci 2:853–860

    CAS  PubMed  Google Scholar 

  235. Peyron R, Le Bars D, Cinotti L, Garcia-Larrea L, Galy G, Landais P, Millet P, Lavenne F, Froment JC, Krogsgaard-Larsen P (1994) Effects of GABAA receptors activation on brain glucose metabolism in normal subjects and temporal lobe epilepsy (TLE) patients. A positron emission tomography (PET) study. Part 1: brain glucose metabolism is increased after GABAA receptors activation. Epilepsy Res 19:45–54

    CAS  PubMed  Google Scholar 

  236. Roland PE, Friberg L (1988) The effect of the GABA-A agonist THIP on regional cortical blood flow in humans. A new test of hemispheric dominance. J Cereb Blood Flow Metab 8:314–323

    CAS  PubMed  Google Scholar 

  237. Tagamets MA, Horwitz B (2001) Interpreting PET and fMRI measures of functional neural activity: the effects of synaptic inhibition on cortical activation in human imaging studies. Brain Res Bull 54:267–273

    CAS  PubMed  Google Scholar 

  238. Gaetz W, Edgar JC, Wang DJ, Roberts TPL (2011) Relating MEG measured motor cortical oscillations to resting gamma-aminobutyric acid (GABA) concentration. Neuroimage 55:616–621

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Traub RD, Cunningham MO, Gloveli T, LeBeau FEN, Bibbig A, Buhl EH, Whittington MA (2003) GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci USA 100:11047–11052

    CAS  PubMed  Google Scholar 

  240. Nasrallah FA, Balcar VJ, Rae CD (2011) Activity dependent GABA release controls brain cortical tissue slice metabolism. J Neurosci Res 89:1935–1945

    CAS  PubMed  Google Scholar 

  241. Stagg CJ, Bestmann S, Constantinescu AO, Moreno LM, Allman C, Mekle R, Woolrich M, Near J, Johansen-Berg H, Rothwell JC (2011) Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol-Lond 589:5845–5855

    CAS  PubMed  Google Scholar 

  242. Michaelis T, Merboldt K-D, Hänicke W, Gyngell ML, Bruhn H, Frahm J (1991) On the identification of cerebral metabolites in localised 1H NMR spectra of human brain in vivo. NMR Biomed 4:90–98

    CAS  PubMed  Google Scholar 

  243. Marjanska M, Henry PG, Bolan PJ, Vaughan B, Seaquist ER, Gruetter R, Ugurbil K, Garwood M (2005) Uncovering hidden in vivo resonances using editing based on localized TOCSY. Magn Reson Med 53:783–789

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Keltner JR, Wald LL, Ledden PJ, Chen YCI, Matthews RT, Kuestermann E, Baker JR, Rosen BR, Jenkins BG (1998) Localized double-quantum filter for the in vivo detection of brain glucose. Magn Reson Med 39:651–656

    CAS  PubMed  Google Scholar 

  245. de Graaf RA, Dijkhuizen RM, Biessels GJ, Braun KPJ, Nicolay K (2000) In vivo glucose detection by homonuclear spectral editing. Magn Reson Med 43:621–626

    PubMed  Google Scholar 

  246. Mitrakou A, Ryan C, Veneman T, Mokan M, Jenssen T, Kiss I, Durrant J, Cryer P, Gerich J (1991) Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms, and cerebral dysfunction. Am J Physiol 260:E67–E74

    CAS  PubMed  Google Scholar 

  247. Bachelard HS, Cox DWG, Drower J (1984) Sensitivity of guinea-pig hippocampal granule cell field potentials to hexoses in vitro: an effect on cell excitability? J Physiol 352:91–102

    CAS  PubMed  Google Scholar 

  248. Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215

    CAS  PubMed  Google Scholar 

  249. Vannucci SJ, Maher F, Simpson IA (1997) Glucose tranporter proteins in brain: delivery of glucose to neurons and glia. Glia 21:2–21

    CAS  PubMed  Google Scholar 

  250. Morgello S, Uson RR, Schwartz EJ, Haber RS (1995) The human blood-brain barrier glucose transporter (GLUT 1) is a glucose transporter of gray matter astrocytes. Glia 14:43–54

    CAS  PubMed  Google Scholar 

  251. Zeller K, Rahner-Welsch S, Kuschinsky W (1997) Distribution of GLUT1 glucose tranporters in different brain structures compared to glucose utilization and capillary density of adult rat brains. J Cereb Blood Flow Metab 17:204–209

    CAS  PubMed  Google Scholar 

  252. Vannucci SJ, Clark RR, Koehler-Stec E, Li K, Smith CB, Davies P, Maher F, Simpson IA (1998) Glucose tranporter expression in brain: relationship to cerebral glucose utilisation. Dev Neurosci 20:369–379

    CAS  PubMed  Google Scholar 

  253. Bachelard HS, Daniel PM, Love ER, Pratt OE (1973) The transport of glucose into the brain of the rat in vivo. Proc R Soc Lond B 183:71–82

    CAS  PubMed  Google Scholar 

  254. Nagamatsu S, Sawa H, Kamada K, Nakamichi Y, Yoshimoto K, Hoshino T (1993) Neuron-specific glucose transporter (NSGT): CNS distribution of GLUT3 rat glucose transporter (RGT3) in rat central neurons. FEBS Lett 334:289–295

    CAS  PubMed  Google Scholar 

  255. Maher F, Davies-Hill TM, Simpson IA (1996) Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J 315:827–831

    CAS  PubMed  Google Scholar 

  256. Lund-Andersen H (1979) Transport of glucose from blood to brain. Physiol Rev 59:305–352

    CAS  PubMed  Google Scholar 

  257. Pfeuffer J, Tkác I, Gruetter R (2000) Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 20:736–746

    CAS  PubMed  Google Scholar 

  258. Silver IA, Erecinska M (1998) Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J Neurophysiol 79:1733–1745

    CAS  PubMed  Google Scholar 

  259. Nicholson C, Syková E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215

    CAS  PubMed  Google Scholar 

  260. de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, Hetherington HP, Rothman D (2001) Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Metab 21:483–492

    PubMed  Google Scholar 

  261. Merboldt K-D, Bruhn H, Hänicke W, Michaelis T, Frahm J (1992) Decrease of glucose in the human visual cortex during photic stimulation. Magn Reson Med 25:187–194

    CAS  PubMed  Google Scholar 

  262. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    CAS  PubMed  Google Scholar 

  263. Dienel GA (2013) Fuelling and imaging brain activation. ASN Neuro 4:267–321

    Google Scholar 

  264. Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15:511–524

    CAS  PubMed  Google Scholar 

  265. Bhattacharya SB, Datta AG (1993) Is brain a gluconeogenic organ? Mol Cell Biochem 125:51–57

    CAS  PubMed  Google Scholar 

  266. Dringen R, Schmoll D, Cesar M, Hamprecht B (1993) Incorporation of radioactivity from C-14 lactate into the glycogen of cultured mouse astroglial cells—evidence for gluconeogenesis in brain cells. Biol Chem Hoppe-Seyler 374:343–347

    CAS  PubMed  Google Scholar 

  267. Griffin JL, Rae C, Radda GK, Matthews PM (1999) Delayed labelling of brain glutamate after an intra-arterial [13C]glucose bolus: evidence for aerobic metabolism of guinea pig brain glycogen store. Biochim Biophys Acta 1450:297–307

    CAS  PubMed  Google Scholar 

  268. Swanson R (1992) Physiological coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70:S138–S144

    CAS  PubMed  Google Scholar 

  269. Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485

    CAS  PubMed  Google Scholar 

  270. Nelson T, Lucignani G, Atlas S, Crane A, Dienel G, Sokoloff L (1985) Reexamination of glucose-6-phosphatase activity in the brain in vivo: no evidence for a futile cycle. Science 229:60–62

    CAS  PubMed  Google Scholar 

  271. Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, Garcia-Rocha M, Soriano E, De Cordoba SR, Guinovart JJ (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10:1407–1413

    CAS  PubMed  Google Scholar 

  272. Choi CH, Coupland NJ, Bhardwaj PP, Kalra S, Casault CA, Reid K, Allen PS (2006) T-2 measurement and quantification of glutamate in human brain in vivo. Magn Reson Med 56:971–977

    CAS  PubMed  Google Scholar 

  273. Jardetzky O, Jardetzky CD (1958) Proton magnetic resonance spectra of amino acids. J Biol Chem 233:383–387

    CAS  PubMed  Google Scholar 

  274. Field LD, Sternhell S, Kalman JR (2008) Organic structures from spectra, 4th edn. Wiley, Chichester

    Google Scholar 

  275. Schubert F, Gallinat J, Seifert F, Rinneberg H (2004) Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. Neuroimage 21:1762–1771

    PubMed  Google Scholar 

  276. Wijtenburg SA, Knight-Scott J (2011) Very short echo time improves the precision of glutamate detection at 3T in (1)H magnetic resonance spectroscopy. J Magn Reson Imag 34:645–652

    Google Scholar 

  277. Snyder J, Wilman A (2010) Field strength dependence of PRESS timings for simultaneous detection of glutamate and glutamine from 1.5 to 7 T. J Magn Reson 203:66–72

    CAS  PubMed  Google Scholar 

  278. Hancu I (2009) Optimized glutamate detection at 3T. J Magn Reson Imag 30:1155–1162

    Google Scholar 

  279. Mullins PG, Chen H, Xu J, Caprihan A, Gasparovic C (2008) Comparative reliability of proton spectroscopy techniques designed to improve detection of J-coupled metabolites. Magn Reson Med 60:964–969

    CAS  PubMed  Google Scholar 

  280. Provencher SW (1993) Estimation of metabolite concentrations from localised in vivo proton NMR spectra. Magn Reson Med 30:672–679

    CAS  PubMed  Google Scholar 

  281. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the MRUI quantitation package. Magma 12:141–152

    CAS  PubMed  Google Scholar 

  282. Tkac I, Oz G, Adriany G, Ugurbil K, Gruetter R (2009) In vivo H-1 NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med 62:868–879

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Bennett MR, Balcar VJ (1999) Forty years of amino acid transmission in the brain. Neurochem Int 35:269–280

    CAS  PubMed  Google Scholar 

  284. Fonnum F (1984) Glutamate—a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    CAS  PubMed  Google Scholar 

  285. Yang JH, Xu S, Shen J (2009) Fast isotopic exchange between mitochondria and cytosol in brain revealed by relayed C-13 magnetization transfer spectroscopy. J Cereb Blood Flow Metab 29:661–669

    CAS  PubMed Central  PubMed  Google Scholar 

  286. Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21:92–98

    CAS  PubMed  Google Scholar 

  287. Berl S, Lajtha A, Waelsch H (1961) Amino acid and protein metabolism-VI Cerebral compartments of glutamic acid metabolism. J Neurochem 7:186–197

    CAS  Google Scholar 

  288. Shank RP, Leo GC, Zielke HR (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1-13C]glucose metabolism. J Neurochem 61:315–323

    CAS  PubMed  Google Scholar 

  289. Kreft M, Bak LK, Waagepetersen HS, Schousboe A (2012) Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. Asn Neuro 4(3):e00086

    Google Scholar 

  290. Bordi F, Ugolini A (1999) Group I metabotropic glutamate receptors: implications for brain diseases. Prog Neurobiol 59:55–79

    CAS  PubMed  Google Scholar 

  291. Kew JNC, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacol 179:4–29

    CAS  Google Scholar 

  292. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 35:1–105

    Google Scholar 

  293. Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A (2010) Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system x(c)(−) as a neuroprotective drug target. CNS Neurol Disord-Drug Targets 9:373–382

    CAS  PubMed  Google Scholar 

  294. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    CAS  PubMed  Google Scholar 

  295. Koga M, Serritella AV, Messmer MM, Hayashi-Takagi A, Hester LD, Snyder SH, Sawa A, Sedlak TW (2011) Glutathione is a physiologic reservoir of neuronal glutamate. Biochem Biophys Res Commun 409:596–602

    CAS  PubMed  Google Scholar 

  296. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    CAS  PubMed  Google Scholar 

  297. Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63:244–258

    CAS  PubMed  Google Scholar 

  298. Lin Y, Stephenson MC, Xin L, Napolitano A, Morris PG (2012) Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T. J Cereb Blood Flow Metab 32:1484–1495

    CAS  PubMed  Google Scholar 

  299. Mangia S, Giove F, DiNuzzo M (2012) Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain. Neurochem Res 37:2554–2561

    CAS  PubMed Central  PubMed  Google Scholar 

  300. Schaller B, Mekle R, Xin LJ, Kunz N, Gruetter R (2013) Net increase of lactate and glutamate concentration in activated human visual cortex detected with magnetic resonance spectroscopy at 7 Tesla. J Neurosci Res 91:1076–1083

    CAS  PubMed  Google Scholar 

  301. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321

    CAS  PubMed  Google Scholar 

  302. Perry TL, Hansen S, Berry K, Mok C, Lesk D (1971) Free amino acids and related compounds in biopsies of human brain. J Neurochem 18:521–528

    CAS  PubMed  Google Scholar 

  303. Oz G, Tkac I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 65:901–910

    CAS  PubMed  Google Scholar 

  304. Kassem MNE, Bartha R (2003) Quantitative proton short-echo-time LASER spectroscopy of normal human white matter and hippocampus at 4 Tesla incorporating macromolecule subtraction. Magn Reson Med 49:918–927

    CAS  PubMed  Google Scholar 

  305. Hancu I, Port J (2011) The case of the missing glutamine. NMR Biomed 24:529–535

    CAS  PubMed  Google Scholar 

  306. Prescot A, Richards T, Dager SR, Choi C, Renshaw PF Phase-adjusted echo time (PATE)-averaging 1H MRS: application for improved glutamine quantification at 2.89T. NMR Biomed 25:1245–1252

  307. Rae C, Geng G, Williams SR (2012) Going for glutamine: evaluation of asymmetric PRESS approaches. Proc Int Soc Magn Reson Med 20:1753

    Google Scholar 

  308. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase—glial localization in brain. Science 195:1356–1358

    CAS  PubMed  Google Scholar 

  309. Fernandes SP, Dringen R, Lawen A, Robinson SR (2010) Neurones express glutamine synthetase when deprived of glutamine or interaction with astrocytes. J Neurochem 114:1527–1536

    CAS  PubMed  Google Scholar 

  310. Kanamori K, Ross BD, Chung JC, Kuo EL (1996) Severity of hyperammonemic encephalopathy correlates with brain ammonia level and saturation of glutamine synthetase in vivo. J Neurochem 67:1584–1594

    CAS  PubMed  Google Scholar 

  311. Peng L, Hertz L, Huang R, Sonnewald U, Petersen SB, Westergaard N, Larsson OM, Schousboe A (1993) Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA. Dev Neurosci 15:367–377

    CAS  PubMed  Google Scholar 

  312. Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    CAS  PubMed  Google Scholar 

  313. Sibson NR, Mason GF, Shen J, Cline GW, Herskovits AZ, Wall JEM, Behar KL, Rothman DL, Shulman RG (2001) In vivo 13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-13C]glucose infusion. J Neurochem 76:975–989

    CAS  PubMed  Google Scholar 

  314. Badar-Goffer R, Bachelard H, Morris P (1990) Cerebral metabolism of acetate and glucose studied by 13C NMR spectroscopy. Biochem J 266:133–139

    CAS  PubMed  Google Scholar 

  315. Bröer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705–719

    PubMed  Google Scholar 

  316. Deitmer JW, Bröer A, Bröer S (2003) Glutamine efflux from astrocytes is mediated by multiple pathways. J Neurochem 87:127–135

    CAS  PubMed  Google Scholar 

  317. Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, Schnepf B, Boeker H, Boesiger P, Northoff G (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatr 66:478–486

    CAS  PubMed  Google Scholar 

  318. Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatr 162:394–396

    PubMed  Google Scholar 

  319. Moore CM, Wardrop M, Frederick BD, Renshaw PF (2006) Topiramate raises anterior cingulate cortex glutamine levels in healthy men; a 4.0 T magnetic resonance spectroscopy study. Psychopharmacol 188:236–243

    CAS  Google Scholar 

  320. Henry ME, Jensen JE, Licata SC, Ravichandran C, Butman ML, Shanahan M, Lauriat TL, Renshaw PF (2010) The acute and late CNS glutamine response to benzodiazepine challenge: a pilot pharmacokinetic study using proton magnetic resonance spectroscopy. Psychiatr Res Neuroimag 184:171–176

    CAS  Google Scholar 

  321. Petroff OAC, Pleban LA, Spencer DD (1995) Symbiosis between in vivo and in vitro NMR spectroscopy—the creatine, N-acetylaspartate, glutamate and GABA content of the epileptic human brain. Magn Reson Imag 13:1197–1211

    CAS  Google Scholar 

  322. Zhang NY, Laake J, Nagelhus E, Storm-Mathisen J, Ottersen OP (1991) Distribution of glutamine-like immunoreactivity in the cerebellum of rat and baboon (Papio anubis) with reference to the issue of metabolic compartmentation. Anat Embryol 184:213–223

    CAS  PubMed  Google Scholar 

  323. Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    CAS  PubMed  Google Scholar 

  324. Terpstra M, Henry PG, Gruetter R (2003) Measurement of reduced glutathione (GSH) in human brain using LCmodel analysis of difference-edited spectra. Magn Reson Med 50:19–23

    CAS  PubMed  Google Scholar 

  325. Kaiser LG, Marjanska M, Matson GB, Iltis I, Bush SD, Soher BJ, Mueller S, Young K (2010) (1)H MRS detection of glycine residue of reduced glutathione in vivo. J Magn Reson 202:259–266

    CAS  PubMed Central  PubMed  Google Scholar 

  326. Terpstra M, Vaughan TJ, Ugurbil K, Lim KO, Schulz SC, Gruetter R (2005) Validation of glutathione quantitation from STEAM spectra against edited H-1 NMR spectroscopy at 4T: application to schizophrenia. Magn Reson Mater Phys, Biol Med 18:276–282

    CAS  Google Scholar 

  327. Maher P (2005) The effects of stress and aging on glutathione metabolism. Age Res Rev 4:288–314

    CAS  Google Scholar 

  328. Satoh T, Yoshioka Y (2006) Contribution of reduced and oxidized glutathione to signals detected by magnetic resonance spectroscopy as indicators of local brain redox state. Neurosci Res 55:34–39

    CAS  PubMed  Google Scholar 

  329. Ballatori N, Krance SM, Notenboom S, Shi SJ, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214

    CAS  PubMed Central  PubMed  Google Scholar 

  330. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol Med 30:1191–1212

    CAS  Google Scholar 

  331. Rice ME, RussoMenna I (1998) Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 82:1213–1223

    CAS  PubMed  Google Scholar 

  332. Keelan J, Allen NJ, Antcliffe D, Pal S, Duchen MR (2001) Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J Neurosci Res 66:873–884

    CAS  PubMed  Google Scholar 

  333. Langeveld CH, Schepens E, Jongenelen CAM, Stoof JC, Hjelle OP, Ottersen OP, Drukarch B (1996) Presence of glutathione immunoreactivity in cultured neurones and astrocytes. NeuroRep 7:1833–1836

    CAS  Google Scholar 

  334. Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJL (1994) Vitamin-E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons—evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62:45–53

    CAS  PubMed  Google Scholar 

  335. Srinivasan R, Ratiney H, Hammond-Rosenbluth KE, Pelletier D, Nelson SJ (2010) MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis. Magn Reson Imag 28:163–170

    CAS  Google Scholar 

  336. Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Bharath MMS, Shankar SK (2011) Glutathione metabolism is modulated by postmortem interval, gender difference and agonal state in postmortem human brains. Neurochem Int 59:1029–1042

    CAS  PubMed  Google Scholar 

  337. Meister A, Anderson ME (1983) Glutathione. Ann Rev Biochem 52:711–760

    CAS  PubMed  Google Scholar 

  338. Meister A (1974) Glutathione—metabolism and function via gamma-glutamyl cycle. Life Science 15:177–190

    CAS  Google Scholar 

  339. Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 112:1–14

    Google Scholar 

  340. Janaky R, Varga V, Hermann A, Saransaari P, Oja SS (2000) Mechanisms of l-cysteine neurotoxicity. Neurochem Res 25:1397–1405

    CAS  PubMed  Google Scholar 

  341. Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281:35785–35793

    CAS  PubMed  Google Scholar 

  342. Kranich O, Dringen R, Sandberg M, Hamprecht B (1998) Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine. Glia 22:11–18

    CAS  PubMed  Google Scholar 

  343. Wang XF, Cynader MS (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem 74:1434–1442

    CAS  PubMed  Google Scholar 

  344. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    CAS  PubMed  Google Scholar 

  345. Sagara J, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial-cells. J Neurochem 61:1672–1676

    CAS  PubMed  Google Scholar 

  346. O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662

    PubMed  Google Scholar 

  347. Heales SJR, Davies SEC, Bates TE, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial-function and decreased N-acetyl aspartate concentration. Neurochem Res 20:31–38

    CAS  PubMed  Google Scholar 

  348. Holub BJ (1986) Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr 6:563–597

    CAS  PubMed  Google Scholar 

  349. Cerdan S, Parrilla R, Santoro J, Rico M (1985) 1H NMR detection of cerebral myo-inositol. FEBS Lett 187:167–172

    CAS  PubMed  Google Scholar 

  350. Hancu I, Gillen R, Cowan J, Zimmerman EA (2011) Improved myo-inositol detection through Carr-Purcell PRESS: a tool for more sensitive mild cognitive impairment diagnosis. Magn Reson Med 65:1515–1521

    CAS  PubMed Central  PubMed  Google Scholar 

  351. Minati L, Aquino D, Bruzzone MG, Erbetta A (2010) Quantitation of normal metabolite concentrations in six brain regions by in vivo 1H-MR spectroscopy. J Med Phys 35:154–163

    PubMed Central  PubMed  Google Scholar 

  352. Haris M, Cai KJ, Singh A, Hariharan H, Reddy R (2011) In vivo mapping of brain myo-inositol. Neuroimage 54:2079–2085

    CAS  PubMed Central  PubMed  Google Scholar 

  353. Fisher SK, Novak JE, Agranoff BW (2002) Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 82:736–754

    CAS  PubMed  Google Scholar 

  354. Belmaker RH, Agam G, van Calker D, Richards MH, Kofman O (1998) Behavioural reversal of lithium effects by four inositol isomers correlates perfectly with biochemical effects on the PI cycle. Neuropsychpharmacol 19:220–232

    CAS  Google Scholar 

  355. Glanville NT, Byers DM, Cook HW, Spence MW, Palmer FBSC (1989) Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim Biophys Acta 1004:169–179

    CAS  PubMed  Google Scholar 

  356. Wiesinger H (1991) Myo-inositol transport in mouse astroglia-rich primary cultures. J Neurochem 56:1698–1704

    CAS  PubMed  Google Scholar 

  357. Novak JE, Turner RS, Agranoff BW, Fisher SK (1999) Differentiated human NT2-N neurons possess a high intracellular content of myo-inositol. J Neurochem 72:1431–1440

    CAS  PubMed  Google Scholar 

  358. Wong Y-HH, Kalmbach SJ, Hartmann BK, Sherman WR (1987) Immunohistochemical staining and enzyme activity measurements show myo-inositol-1-phosphate synthase to be localised in the vasculature of the brain. J Neurochem 48:1434–1442

    CAS  PubMed  Google Scholar 

  359. Kim JP, Lentz MR, Westmoreland SV, Greco JB, Ratai EM, Halpern E, Lackner AA, Masliah E, Gonzalez RG (2005) Relationships between astrogliosis and H-1 MR spectroscopic measures of brain choline/creatine and myo-inositol/creatine in a primate model. Am J Neuroradiol 26:752–759

    PubMed  Google Scholar 

  360. Vadnal R, Parthasarathy L, Parthasarathy R (1997) Role of inositol in the treatment of psychiatric disorders. CNS Drugs 7:6–16

    CAS  Google Scholar 

  361. Gani D, Downes CP, Batty I, Bramham J (1993) Lithium and myo-inositol homeostasis. Biochim Biophys Acta 1177:253–269

    CAS  PubMed  Google Scholar 

  362. Futerman AH, Low MG, Ackerman KE, Sherman WR, Silman I (1985) Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetylcholinesterase. Biochem Biophys Res Commun 129:312–317

    CAS  PubMed  Google Scholar 

  363. Elmallakh RS, Li R (1993) Is the Na+–K+-ATPase the link between phosphoinositide metabolism and bipolar disorder. J Neuropsychiatr Clin Neurosci 5:361–368

    CAS  Google Scholar 

  364. Jones DR, Varela-Nieto I (1999) Diabetes and the role of inositol-containing lipids in insulin signaling. Mol Med 5:505–514

    CAS  PubMed Central  PubMed  Google Scholar 

  365. Levine J, Chengappa KNR, Reddy R (1999) Acute myoinositol enhances swimming activity in goldfish. J Neural Transm 106:433–441

    CAS  PubMed  Google Scholar 

  366. Fux M, Levine J, Aviv A, Belmaker RH (1996) Inositol treatment of obsessive-compulsive disorder. Am J Psychiatr 153:1219–1221

    CAS  PubMed  Google Scholar 

  367. Strange K, Morrison R, Shrode L, Putnam R (1993) Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am J Physiol 265:C244–C256

    CAS  PubMed  Google Scholar 

  368. Häussinger D, Laubenberger J, Vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterol 107:1475–1480

    Google Scholar 

  369. Trachtman H, Futterweit S, Hammer E, Siegel TW, Oates P (1991) The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states. Life Science 49:677–688

    CAS  Google Scholar 

  370. Rumpel H, Lim WEH, Chang HM, Chan LL, Ho GL, Wong MC, Tan KP (2003) Is myo-inositol a measure of glial swelling after stroke? A magnetic resonance study. J Magn Reson Imag 17:11–19

    Google Scholar 

  371. Ashwal S, Holshouser B, Tong K, Serna T, Osterdock R, Gross M, Kido D (2004) Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res 56:630–638

    CAS  PubMed  Google Scholar 

  372. Rango M, Cogiamanian F, Marceglia S, Barberis B, Arighi A, Biondetti P, Priori A (2008) Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn Reson Med 60:782–789

    CAS  PubMed  Google Scholar 

  373. Spector R (1988) Myo-inositol transport through the blood brain barrier. Neurochemical Res 13:785–787

    CAS  Google Scholar 

  374. Levine J, Rapaport A, Lev L, Bersudsky Y, Kofman O, Belmaker RH, Shapiro J, Agam G (1993) Inositol treatment raises CSF inositol levels. Brain Res 627:168–170

    CAS  PubMed  Google Scholar 

  375. Patishi Y, Lubrich B, Berger M, van Calker D, Kofman O, Belmaker RH (1996) Differential uptake of myo-inositol in vivo into rat brain areas. Eur Neuropsychopharmacol 6:73–75

    CAS  PubMed  Google Scholar 

  376. Berry GT, Wu S, Buccafusca R, Ren J, Gonzales LW, Ballard PL, Golden JA, Stevens MJ, Greer JJ (2003) Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. J Biol Chem 278:18297–18302

    CAS  PubMed  Google Scholar 

  377. Guo W, Shimada S, Tajiri H, Yamauchi A, Yamashita T, Okada S, Tohyama M (1997) Developmental regulation of Na+/myo-inositol cotransporter gene expression. Mol Brain Res 51:91–96

    CAS  PubMed  Google Scholar 

  378. Battaglia FC, Meschia JN, Blechnew JN, Barron DH (1961) The free myo-inositol concentration of adult and fetal tissues of several species. Q J Exp Med 46:188–193

    CAS  Google Scholar 

  379. Coady MJ, Wallendorff B, Gagnon DG, Lapointe JY (2002) Identification of a novel Na+/myo-inositol cotransporter. J Biol Chem 277:35219–35224

    CAS  PubMed  Google Scholar 

  380. Bissonnette P, Coady MJ, Lapointe JY (2004) Expression of the sodium-myo-inositol cotransporter SMIT2 at the apical membrane of Madin-Darby canine kidney cells. J Physiol-Lond 558:759–768

    CAS  PubMed  Google Scholar 

  381. Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B (2001) Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J 20:4467–4477

    CAS  PubMed  Google Scholar 

  382. Uldry M, Steiner P, Zurich MG, Beguin P, Hirling H, Dolci W, Thorens B (2004) Regulated exocytosis of an H+/myo-inositol symporter at synapses and growth cones. EMBO J 23:531–540

    CAS  PubMed  Google Scholar 

  383. Moore CM, Breeze JL, Kukes TL, Rose SL, Dager SR, Cohen BM, Renshaw PF (1999) Effects of myo-inositol ingestion on human brain myo-inositol levels: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatr 45:1197–1202

    CAS  Google Scholar 

  384. Lubrich B, Spliess O, Gebicke-Haerter P-J, van Calker D (2000) Differential expression, activity and regulation of the sodium/myo-inositol cotransporter in astrocyte cultures from different regions of the rat brain. Neuropharmacol 39:680–690

    CAS  Google Scholar 

  385. Shonk T, Ross BD (1995) Role of increased cerebral myo-inositol in the dementia of down syndrome. Magn Reson Med 33:858–861

    CAS  PubMed  Google Scholar 

  386. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M (2000) The DNA sequence of human chromosome 21. Nature 405:311–319

    CAS  PubMed  Google Scholar 

  387. Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TAD, Rajagopalan B, Styles P (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123:2046–2054

    PubMed  Google Scholar 

  388. McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE (2000) Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit A beta-induced toxicity. J Biol Chem 275:18495–18502

    CAS  PubMed  Google Scholar 

  389. Bersudsky Y, Kaplan Z, Shapiro Y, Agam G, Kofman O, Belmaker RH (1994) Behavioural evidence for the existence of two pools of cellular inositol. Eur Neuropsychopharmacol 4:463–467

    CAS  PubMed  Google Scholar 

  390. Michaelis T, Helms G, Merboldt K-D, Hänicke W, Bruhn H, Frahm J (1993) Identification of scyllo-inositol in proton NMR spectra of human brain in vivo. NMR Biomed 6:105–109

    CAS  PubMed  Google Scholar 

  391. Hipps PP, Holland WH, Sherman WR (1977) Interconversion of myoinositol and scyllo-inositol with simultaneous formation of neo-inositol by an NADP+ dependent epimerase from bovine brain. Biochem Biophys Res Commun 77:340–346

    CAS  PubMed  Google Scholar 

  392. Viola A, Nicoli F, Denis B, Confort-Gouny S, Le Fur Y, Ranjeva JP, Viout P, Cozzone PJ (2004) High cerebral scyllo-inositol: a new marker of brain metabolism disturbances induced by chronic alcoholism. Magn Reson Mater Phys, Biol Med 17:47–61

    CAS  Google Scholar 

  393. Seaquist ER, Gruetter R (1998) Identification of a high concentration of scyllo-inositol in the brain of a healthy human subject using H-1 and C-13 NMR. Magn Reson Med 39:313–316

    CAS  PubMed  Google Scholar 

  394. Choi JK, Carreras I, Dedeoglu A, Jenkins BG (2010) Detection of increased scyllo-inositol in brain with magnetic resonance spectroscopy after dietary supplementation in Alzheimer’s disease mouse models. Neuropharmacol 59:353–357

    CAS  Google Scholar 

  395. Fenili D, Brown M, Rappaport R, McLaurin J (2007) Properties of scyllo-inositol as a therapeutic treatment of AD-like pathology. J Mol Med-Jmm 85:603–611

    CAS  Google Scholar 

  396. Nozadze M, Mikautadze E, Lepsveridze E, Mikeladze E, Kuchiashvili N, Kiguradze T, Kikvidze M, Solomonia R (2011) Anticonvulsant activities of myo-inositol and scyllo-inositol on pentylenetetrazol induced seizures. Seizure-Eur J Epilepsy 20:173–176

    CAS  Google Scholar 

  397. Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079–1089

    CAS  PubMed  Google Scholar 

  398. Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RA, Passonneau JV (1994) Control of glucose utilization in working perfused rat heart. J Biol Chem 269:25502–25514

    CAS  PubMed  Google Scholar 

  399. Quistorff B, Grunnet N (2011) The isoenzyme pattern of LDH does not play a physiological role; except perhaps during fast transitions in energy metabolism. Aging-US 3:457–460

    CAS  Google Scholar 

  400. Deuticke B, Rickert I, Beyer E (1978) Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes. Biochim Biophys Acta 507:137–155

    CAS  PubMed  Google Scholar 

  401. Coady MJ, Chang MH, Charron FA, Plata C, Wallendorff B, Sah JF, Markowitz SD, Romero ME, Lapointe JY (2004) The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter. J Physiol-Lond 557:719–731

    CAS  PubMed  Google Scholar 

  402. Gopal E, Umapathy NS, Martin PM, Ananth S, Gnana-Prakasam JP, Becker H, Wagner CA, Ganapathy V, Prasad PD (2007) Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochimica Et Biophysica Acta-Biomembranes 1768:2690–2697

    CAS  Google Scholar 

  403. Bröer S, Rahman B, Pellegri G, Pellerin L, Martin JL, Verleysdonk S, Hamprecht B, Magistretti PJ (1997) Comparison of lactate transport in astroglial cells and transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272:30096–30102

    PubMed  Google Scholar 

  404. Martin PM, Gopal E, Ananth S, Zhuang L, Itagaki S, Prasad BM, Smith SB, Prasad PD, Ganapathy V (2006) Identify of SMCT1(SLC5A8) as a neuron-specific Na+ -coupled transporter for active uptake of l-lactate and ketone bodies in the brain. J Neurochem 98:279–288

    CAS  PubMed  Google Scholar 

  405. Dringen R, Wiesinger H, Hamprecht B (1993) Uptake of L-lactate by cultured rat brain neurons. Neurosci Lett 163:5–7

    CAS  PubMed  Google Scholar 

  406. Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370

    CAS  PubMed  Google Scholar 

  407. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ERS, Martinou JC (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337:93–96

    CAS  PubMed  Google Scholar 

  408. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter JA (2012) Mitochondrial pyruvate carrier required for pyruvate uptake in yeast, drosophila, and humans. Science 337:96–100

    CAS  PubMed Central  PubMed  Google Scholar 

  409. Halestrap AP (1975) The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J 148:85–96

    CAS  PubMed  Google Scholar 

  410. Halestrap AP, Denton RM (1974) Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by a-cyano-4-hydroxycinnamate. Biochem J 138:313–316

    CAS  PubMed  Google Scholar 

  411. Martin PM, Dun Y, Mysona B, Ananth S, Roon P, Smith SB, Ganapathy V (2007) Expression of the sodium-coupled monocarboxylate transporters SMCT1 (SLC5A8) and SMCT2 (SLC5A12) in retina. Invest Ophthalmol Vis Sci 48:3356–3363

    PubMed  Google Scholar 

  412. Cornford EM, Cornford ME (1986) Nutrient transport and the blood brain barrier in developing animals. Fed Proc 45:2065–2072

    CAS  PubMed  Google Scholar 

  413. Medina JM, Tabernero A, Tovar A, Martin-Barrientos J (1996) Metabolic fuel utilisation and pyruvate oxidation during the postnatal period. J Inher Metab Disord 19:432–442

    CAS  Google Scholar 

  414. Cremer JE, Braun LD, Oldendorf WH (1976) Changes during development in transport processes of the blood-brain barrier. Biochim Biophys Acta 448:633–637

    CAS  PubMed  Google Scholar 

  415. Magistretti PJ, Pellerin L (1996) Cellular bases of brain energy metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes. Cereb Cortex 6:50–61

    CAS  PubMed  Google Scholar 

  416. Silver IA, Erecinska M (1994) Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo- and hyperglycaemic animals. J Neurosci 14:5068–5076

    CAS  PubMed  Google Scholar 

  417. Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci (USA) 83:1140–1144

    CAS  Google Scholar 

  418. Fox PT, Raichle ME, Mintun MA, Dence C (1988) Non-oxidative glucose consumption during focal physiological neuronal activity. Science 241:462–464

    CAS  PubMed  Google Scholar 

  419. Lowry JP, Fillenz M (1997) Evidence for uncoupling of oxygen and glucose utilization during neuronal activation in rat striatum. J Physiol 498(2):497–501

    CAS  PubMed  Google Scholar 

  420. Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19:393–400

    CAS  PubMed  Google Scholar 

  421. Contreras L, Satrustegui J (2009) Calcium signaling in brain mitochondria. Interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways. J Biol Chem 284:7091–7099

    CAS  PubMed  Google Scholar 

  422. Dienel GA, Hertz L (2001) Glucose and lactate metabolism during brain activation. J Neurosci Res 66:824–838

    CAS  PubMed  Google Scholar 

  423. Cruz NF, Ball KK, Dienel GA (2007) Functional imaging of focal brain activation in conscious rats: impact of [C-14]glucose metabolite spreading and release. J Neurosci Res 85:3254–3266

    CAS  PubMed  Google Scholar 

  424. Dienel G, Ball K, Popp D, Cruz NF (2001) A role for gap junctions in metabolite spreading? J Neurochem 78(suppl 1):86

    Google Scholar 

  425. Cruz NF, Adachi K, Dienel GA (1999) Rapid efflux of lactate from cerebral cortex during K+-induced spreading cortical depression. J Cereb Blood Flow Metab 19:380–392

    CAS  PubMed  Google Scholar 

  426. Ball KK, Cruz NF, Mrak RE, Dienel GA (2010) Trafficking of glucose, lactate, and amyloid-beta from the inferior colliculus through perivascular routes. J Cereb Blood Flow Metab 30:162–176

    CAS  PubMed  Google Scholar 

  427. Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109:55–62

    CAS  PubMed Central  PubMed  Google Scholar 

  428. Levasseur JE, Alessandri B, Reinert M, Clausen T, Zhou ZW, Altemeni N, Bullock MR (2006) Lactate not glucose, up-regulates mitochondrial oxygen consumption both in sham and lateral fluid percussed rat brains. Neurosurgery 59:1122–1130

    PubMed  Google Scholar 

  429. Gonzalez SV, Nguyen NHT, Rise F, Hassel B (2005) Brain metabolism of exogenous pyruvate. J Neurochem 95:284–293

    CAS  PubMed  Google Scholar 

  430. Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slices preparation. Science 240:1326–1328

    CAS  PubMed  Google Scholar 

  431. Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426

    CAS  PubMed  Google Scholar 

  432. Cox DWG, Bachelard HS (1988) Partial attenuation of dentate granule cell evoked activity by the alternative substrates, lactate and pyruvate: evidence for a postsynaptic action. Exp Brain Res 69:368–372

    CAS  PubMed  Google Scholar 

  433. Yamane K, Yokono K, Okada Y (2000) Anaerobic glycolysis is crucial for the maintenance of neural activity in guinea pig hippocampal slices. J Neurosci Meth 103:163–171

    CAS  Google Scholar 

  434. McKenna MC, Hopkins IB, Carey A (2001) Alpha-cyano-4-hydroxycinnamate decreases both glucose and lactate metabolism in neurons and astrocytes: implications for lactate as an energy substrate for neurons. J Neurosci Res 66:747–754

    CAS  PubMed  Google Scholar 

  435. Petroff OA, Prichard JW, Behar KL, Rothman DL, Alger JR, Shulman RG (1985) Cerebral metabolism in hyper- and hypo-carbia: 31P and 1H nuclear magnetic resonance studies. Neurology 35:1681–1688

    CAS  PubMed  Google Scholar 

  436. Rosenberg AA (1988) Response of the cerebral circulation to profound hypocarbia in neonatal lambs. Stroke 19:1365–1370

    CAS  PubMed  Google Scholar 

  437. Maddock RJ, Casazza GA, Buonocore MH, Tanase C (2011) Vigorous exercise increases brain lactate and Glx (glutamate plus glutamine): a dynamic 1H-MRS study. Neuroimage 57:1324–1330

    CAS  PubMed  Google Scholar 

  438. Dalsgaard MK, Quistorff B, Danielsen ER, Selmer C, Vogelsang T, Secher NH (2004) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol-Lond 554:571–578

    CAS  PubMed  Google Scholar 

  439. Dager SR, Marro KI, Richards TL, Metzger GD (1992) Localised magnetic resonance spectroscopy measurement of brain lactate during intravenous lactate infusion in healthy volunteers. Life Science 51:973–985

    CAS  Google Scholar 

  440. Naylor E, Aillon DV, Barrett BS, Wilson GS, Johnson DA, Johnson DA, Harmon HP, Gabbert S, Petillo PA (2012) Lactate as a biomarker for sleep. Sleep 35:1209–1222

    PubMed  Google Scholar 

  441. Edden RAE, Harris AD, Murphy K, Evans CJ, Saxena N, Hall JE, Bailey DM, Wise RG (2010) Edited MRS is sensitive to changes in lactate concentration during inspiratory hypoxia. J Magn Reson Imag 32:320–325

    Google Scholar 

  442. Ben-Joseph O, Bader-Gofer RS, Morris PG, Bachelard HS (1993) Glycerol-3-phosphate and lactate as indicators of cytoplasmic redox state in severe and mild hypoxia respectively; a 13C and 31P NMR study. Biochem J 291:915–919

    Google Scholar 

  443. Van Rijen PC, Luyten PR, Berkelbach van der Sprenkel JW, Kraaier V, van Huffelen AC, Tulleken AF, den Hollander JA (1989) 1H and 31P NMR measurements of cerebral lactate, high-energy phosphate levels and pH in humans during voluntary hyperventilation: associated EEG, capnographic and Doppler findings. Magn Reson Med 10:182–193

    PubMed  Google Scholar 

  444. Bell JD, Brown JC, Kubal G, Sadler PJ (1988) NMR-invisible lactate in blood plasma. FEBS Lett 235:81–86

    CAS  PubMed  Google Scholar 

  445. Williams SR, Proctor E, Allen K, Gadian DG, Crockard HA (1988) Quantitative estimation of lactate in the brain by 1H NMR. Magn Reson Med 7:425–431

    CAS  PubMed  Google Scholar 

  446. Graham GD, Blamire AM, Rothman DL, Brass LM, Fayad PB, Petroff OA, Prichard JW (1993) Early temporal variation of cerebral metabolites after human stroke. A proton magnetic resonance spectroscopy study. Stroke 24:1891–1896

    CAS  PubMed  Google Scholar 

  447. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from H-1 NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27:1055–1063

    CAS  PubMed  Google Scholar 

  448. Sarchielli P, Tarducci R, Presciutti O, Gobbi G, Pelliccioli GP, Stipa G, Alberti A, Capocchi G (2005) Functional H-1-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage 24:1025–1031

    PubMed  Google Scholar 

  449. Richards TL, Dager SR, Corina D, Serafini S, Heide AC, Steury K, Strauss W, Hayes CE, Abbott RD, Craft S, Shaw D, Posse S, Berninger VW (1999) Dyslexic children have abnormal brain lactate response to reading-related language tasks. Am J Neuroradiol 20:1393–1398

    CAS  PubMed  Google Scholar 

  450. Richards TL, Corina D, Serafini S, Steury K, Echelard DR, Dager SR, Marro K, Abbott RD, Maravilla KR, Berninger VW (2000) Effects of a phonologically driven treatment for dyslexia on lactate levels measured by proton MR spectroscopy imaging. Am J Neuroradiol 21:916–922

    CAS  PubMed  Google Scholar 

  451. Gjedde A, Poulsen PH, Østergaard L (1999) On the oxygenation of hemoglobin in the human brain. Adv Exp Med Biol 471:81–97

    Google Scholar 

  452. Maher AD, Solo V, Rae CD (2013) Magnetic resonance-based metabolomics for understanding neurological disorders: current status and considerations. Curr Metabolomics 1:2–14

    CAS  Google Scholar 

  453. Tisell A, Dahlqvist LO, Warntjes J, Lundberg P (2013) Procedure for quantitative 1H MRS and tissue characterization of human brain tissue based on the use of quantitative MRI. Magn Reson Med 70:905–915

    CAS  Google Scholar 

  454. Scheidigger O, Wingeier K, Stefan D, Graveron-Demilly D, van Ormondt D, Wiest R, Slotboom J (2013) Optimized quantitative magnetic resonance spectroscopy for clinical routine. Magn Reson Med 70:25–32

    Google Scholar 

  455. Steen RG, Ogg RJ (2005) Abnormally high levels of brain N-acetylaspartate in children with sickle cell disease. Am J Neuroradiol 26:463–468

    PubMed  Google Scholar 

  456. Hwang JH, Graham GD, Behar KL, Alger JR, Prichard JW, Rothman DL (1996) Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magn Reson Med 35:633–639

    CAS  PubMed  Google Scholar 

  457. Mader I, Seeger U, Karitzky J, Erb M, Schick F, Klose U (2002) Proton magnetic resonance spectroscopy with metabolite nulling reveals regional differences of macromolecules in normal human brain. J Magn Reson Imag 16:538–546

    Google Scholar 

  458. Seeger U, Klose U, Mader I, Grodd W, Nagele T (2003) Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 49:19–28

    CAS  PubMed  Google Scholar 

  459. Miyake M, Morino H, Mizobuchi M, Kakimoto Y (1982) N-Acetyl-l-aspartic acid, N-acetyl-alpha-l-aspartyl-l-glutamic acid and beta-citryl-l-glutamic acid in human urine. Clin Chim Acta 120:119–126

    CAS  PubMed  Google Scholar 

  460. Ruggieri M, Tortorella C, Ceci E, Paolicelli D, Solfrizzi V, Di Bitonto G, Pica C, Mastrapasqua M, Livrea P, Trojano M (2011) Age-related changes of serum N-acetyl-aspartate in healthy controls. Age Ageing 40:391–395

    PubMed  Google Scholar 

  461. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA (2007) N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131

    CAS  PubMed Central  PubMed  Google Scholar 

  462. Béard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115:297–313

    PubMed  Google Scholar 

  463. Kottke M, Wallimann T, Brdiczka D (1994) Dual electron microscopic localization of mitochondrial creatine kinase in brain mitchondria. Biochem Med Metab Biol 51:105–117

    CAS  PubMed  Google Scholar 

  464. Nies AT, Jedlitschky G, Konig J, Herold-Mende C, Steiner HH, Schmitt HP, Keppler D (2004) Expression and immunolocalization of the multidrug resistance proteins, Mrp1-Mrp6 (ABCC1–ABCC6), in human brain. Neuroscience 129:349–360

    CAS  PubMed  Google Scholar 

  465. Aoyama K, Suh SW, Hamby AM, Liu JL, Chan WY, Chen YM, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126

    CAS  PubMed  Google Scholar 

  466. Shanker G, Allen JW, Mutkus LA, Aschner M (2001) The uptake of cysteine in cultured primary astrocytes and neurons. Brain Res 902:156–163

    CAS  PubMed  Google Scholar 

  467. Rae C, Fekete AD, Kashem MA, Nasrallah FA, Nasrallah FA, Bröer S (2012) Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res 37:2541–2553

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Research Council of Australia (Fellowship to CR). The author is grateful to Prof. Stephen R. Williams (The University of Manchester), to Assoc. Prof. Matthias Klugmann (The University of NSW), to Prof. Stefan Bröer (The Australian National University) and to Prof. John Griffiths (Cancer Research, UK) for critical appraisal of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline D. Rae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rae, C.D. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 39, 1–36 (2014). https://doi.org/10.1007/s11064-013-1199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1199-5

Keywords

Navigation