Skip to main content

Advertisement

Log in

Thiamine Deficiency: An Update of Pathophysiologic Mechanisms and Future Therapeutic Considerations

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Thiamine is an essential vitamin that is necessary to maintain the functional integrity of cells in the brain. Its deficiency is the underlying cause of Wernicke’s encephalopathy (WE), a disorder primarily associated with, but not limited to, chronic alcoholism. Thiamine deficiency leads to the development of impaired energy metabolism due to mitochondrial dysfunction in focal regions of the brain resulting in cerebral vulnerability. The consequences of this include oxidative stress, excitotoxicity, inflammatory responses, decreased neurogenesis, blood–brain barrier disruption, lactic acidosis and a reduction in astrocyte functional integrity involving a loss of glutamate transporters and other astrocyte-specific proteins which together contribute in a major way to the resulting neurodegeneration. Exactly how these factors acting in concert lead to the demise of neurons is unclear. In this review we reassess their relative importance in the light of more recent findings and discuss therapeutic possibilities that may provide hope for the future for individuals with WE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ATN:

Anterior thalamic nuclei

BBB:

Blood–brain barrier

CNS:

Central nervous system

ER:

Endoplasmic reticulum

HD:

Huntington’s disease

α-KGDH:

Alpha-ketoglutarate dehydrogenase

IL-1β:

Interleukin-1 beta

NO:

Nitric oxide

NOS:

NO synthase

NSCs:

Neural stem cells

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SGZ:

Subgranular zone

O2 :

Superoxide anion

SVZ:

Subventricular zone

TCA:

Tricarboxylic acid cycle

TD:

Thiamine deficiency

TNF-α:

Tumor necrosis factor-alpha

WE:

Wernicke’s encephalopathy

WKS:

Wernicke–Korsakoff syndrome

References

  1. Baines M (1978) Detection and incidence of B and C vitamin deficiency in alcohol related illness. Ann Clin Biochem 15:307–312

    CAS  PubMed  Google Scholar 

  2. Camilo ME, Morgan MY, Sherlock S (1981) Erythrocyte transketolase activity in alcoholic liver disease. Scand J Gastroenterol 16:273–279

    CAS  PubMed  Google Scholar 

  3. Lévy S, Hervé C, Delacoux E, Erlinger S (2002) Thiamine deficiency in hepatitis C virus and alcohol-related liver diseases. Dig Dis Sci 47:543–548

    PubMed  Google Scholar 

  4. Thomson AD, Jeyasingham MD, Pratt OE, Shaw GK (1987) Nutrition and alcoholic encephalopathies. Acta Med Scand Suppl 717:55–65

    CAS  PubMed  Google Scholar 

  5. Morgan MY (1999) Nutritional aspects of liver and biliary disease. In: Bircher J, Benhamou JP, McIntyre N, Rizzetto M, Rode’s J (eds) Oxford textbook of clinical hepatology. Oxford Medical Publication, Oxford, pp 1923–1981

    Google Scholar 

  6. Cook CC, Hallwood PM, Thomson AD (1998) B vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. Alcohol Alcohol 33:317–336

    CAS  PubMed  Google Scholar 

  7. Harper CG, Giles M, Finlay-Jones R (1986) Clinical signs in the Wernicke–Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. J Neurol Neurosurg Psychiatry 49:341–345

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Vasconcelos MM, Silva KP, Vidal G, Silva AF, Domingues RC, Berditchevsky CR (1999) Early diagnosis of pediatric Wernicke’s encephalopathy. Pediatr Neurol 20:289–294

    CAS  PubMed  Google Scholar 

  9. Breslow R (1958) On the mechanism of thiamine action. IV. Evidence from studies on model systems. J Am Chem Soc 80:3719–3726

    CAS  Google Scholar 

  10. Kern D, Kern G, Neef H, Tittmann K, Killenberg-Jabs M, Wikner C, Schneider G, Hübner G (1997) How thiamine diphosphate is activated in enzymes. Sci 275:67–70

    CAS  Google Scholar 

  11. Chisolm-Straker M, Cherkas D (2013) Altered and unstable: wet beriberi, a clinical review. J Emerg Med 45:341–344

    PubMed  Google Scholar 

  12. Kraut J, Reed HJ (1962) The crystal structure of thiamine hydrochloride (vitamin B1). Acta Crystallogr 15:747–757

    Google Scholar 

  13. Witte KK, Clark AL, Cleland JG (2001) Chronic heart failure and micronutrients. J Am Coll Cardiol 37:1765–1774

    CAS  PubMed  Google Scholar 

  14. Aikawa H, Watanabe IS, Furuse T, Iwasaki Y, Satoyoshi E, Sumi T, Moroji T (1984) Low energy levels in thiamine-deficient encephalopathy. J Neuropathol Exp Neurol 43:276–287

    CAS  PubMed  Google Scholar 

  15. Hazell AS, Hakim AM, Senterman MK, Hogan MJ (1998) Regional activation of L-type voltage-sensitive calcium channels in experimental thiamine deficiency. J Neurosci Res 52:742–749

    CAS  PubMed  Google Scholar 

  16. Hazell AS, Rao KV, Danbolt NC, Pow DV, Butterworth RF (2001) Selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke’s encephalopathy. J Neurochem 78:560–568

    CAS  PubMed  Google Scholar 

  17. Beal MF (1996) Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol 6:661–666

    CAS  PubMed  Google Scholar 

  18. Butterworth RF (1982) Neurotransmitter function in thiamine-deficiency encephalopathy. Neurochem Int 4:449–464

    CAS  PubMed  Google Scholar 

  19. Van Woert MH, Plaitakis A, Hwang EC, Berl S (1979) Effect of thiamine deficiency on brain serotonin turnover. Brain Res 179:103–110

    PubMed  Google Scholar 

  20. Martin PR, Singleton CK, Hiller-Sturmhöfel S (2003) The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health 27:134–142

    PubMed  Google Scholar 

  21. Jhala SS, Hazell AS (2011) Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochem Int 58:248–260

    CAS  PubMed  Google Scholar 

  22. Navarro D, Zwingmann C, Hazell AS, Butterworth RF (2005) Brain lactate synthesis in thiamine deficiency: a re-evaluation using 1H-13C nuclear magnetic resonance spectroscopy. J Neurosci Res 79:33–41

    CAS  PubMed  Google Scholar 

  23. Hazell AS, Butterworth RF, Hakim AM (1993) Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J Neurochem 61:1155–1158

    CAS  PubMed  Google Scholar 

  24. Langlais PJ, Zhang SX (1993) Extracellular glutamate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801. J Neurochem 61:2175–2182

    CAS  PubMed  Google Scholar 

  25. Todd KG, Butterworth RF (1999) Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia 25:190–198

    CAS  PubMed  Google Scholar 

  26. Matsushima K, MacManus JP, Hakim AM (1997) Apoptosis is restricted to the thalamus in thiamine deficient rats. NeuroReport 8:867–870

    CAS  PubMed  Google Scholar 

  27. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    CAS  PubMed  Google Scholar 

  28. Schipke CG, Kettenmann H (2004) Astrocyte responses to neuronal activity. Glia 47:226–232

    PubMed  Google Scholar 

  29. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    CAS  PubMed  Google Scholar 

  30. Quaegebeur A, Segura I, Carmeliet P (2010) Pericytes: blood–brain barrier safeguards against neurodegeneration? Neuron 68:321–323

    CAS  PubMed  Google Scholar 

  31. Hakim AM, Pappius HM (1981) The effect of thiamine deficiency on local cerebral glucose utilization. Ann Neurol 9:334–339

    CAS  PubMed  Google Scholar 

  32. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    CAS  PubMed  Google Scholar 

  33. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    PubMed  Google Scholar 

  34. Hakim AM (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol 16:673–679

    CAS  PubMed  Google Scholar 

  35. Yokote K, Miyagi K, Kuzuhara S, Yamanouchi H, Yamada H (1991) Wernicke encephalopathy: follow-up study by CT and MR. J Comput Assist Tomogr 15:835–838

    CAS  PubMed  Google Scholar 

  36. Bergui M, Bradac GB, Zhong JJ, Barbero PA, Durelli L (2001) Diffusion-weighted MR in reversible Wernicke encephalopathy. Neuroradiology 43:969–972

    CAS  PubMed  Google Scholar 

  37. Chan H, Butterworth RF, Hazell AS (2004) Astrocytes respond to thiamine deficiency-induced swelling by downregulating aquaporin-4 levels. Neurosci Lett 366:231–234

    CAS  PubMed  Google Scholar 

  38. Collins GH (1967) Glial cell changes in the brain stem of thiamine-deficient rats. Am J Pathol 50:791–814

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Robertson DM, Wasan SM, Skinner DB (1968) Ultrastructural features of early brain stem lesions of thiamine-deficient rats. Am J Pathol 52:1081–1097

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Watanabe I, Kanabe S (1978) Early edematous lesion of pyrithiamine induced acute thiamine deficient encephalopathy in the mouse. J Neuropathol Exp Neurol 37:401–413

    CAS  PubMed  Google Scholar 

  41. Myers RE (1979) Lactic acid accumulation as cause of brain edema and cerebral necrosis resulting from oxygen deprivation. In: Korobkin R, Guilleminault G (eds) Advances in perinatal neurology. Spectrum, New York, pp 85–114

    Google Scholar 

  42. Kalimo H, Rehncrona S, Söderfeldt B, Olsson Y, Siesjö BK (1981) Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metab 1:313–327

    CAS  PubMed  Google Scholar 

  43. Jenkins LW, Becher DP, Coburn TH (1984) A quantitative analysis of glial swelling and ischemic neuronal injury following complete cerebral ischemia. In: Go TG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 523–537

    Google Scholar 

  44. Morishima T, Aoyama M, Iida Y, Yamamoto N, Hirate H, Arima H, Fujita Y, Sasano H, Tsuda T, Katsuya H, Asai K, Sobue K (2008) Lactic acid increases aquaporin 4 expression on the cell membrane of cultured rat astrocytes. Neurosci Res 61:18–26

    CAS  PubMed  Google Scholar 

  45. Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    CAS  PubMed  Google Scholar 

  46. Troncoso JC, Johnston MV, Hess KM, Griffin JW, Price DL (1981) Model of Wernicke’s encephalopathy. Arch Neurol 38:350–354

    CAS  PubMed  Google Scholar 

  47. Nardone R, Höller Y, Storti M, Christova M, Tezzon F, Golaszewski S, Trinka E, Brigo F (2013) Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal. Sci World J. Article ID 309143

  48. Platt BS, Lu GD (1936) Chemical and clinical findings in beri-beri with special reference to vitamin B1 deficiency. QJM 5:355–374

    Google Scholar 

  49. Jones RH (1959) Beriberi heart disease. Circulation 19:275–283

    PubMed  Google Scholar 

  50. McIntyre N, Stanley NN (1971) Cardiac beriberi: two modes of presentation. Br Med J 3:567–569

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Motherway C (1999) Acute pernicious (sho-shin) beri-beri: a report of three cases. Crit Care Resusc 1:69–73

    CAS  PubMed  Google Scholar 

  52. Amato AA, Dumitru D (2001) Acquired neuropathies. In: Dumitru D, Amato AA, Zwarts M (eds) Electrodiagnostic medicine, 2nd edn. Elsevier, New York, pp 937–1041

    Google Scholar 

  53. Butterworth RF (2003) Thiamin deficiency and brain disorders. Nutr Res Rev 16:277–284

    CAS  PubMed  Google Scholar 

  54. Engbers JG, Molhoek GP, Arntzenius AC (1984) Shoshin beriberi: a rare diagnostic problem. Br Heart J 51:581–582

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Sechi G, Serra A (2007) Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol 6:442–455

    CAS  PubMed  Google Scholar 

  56. Wernicke C (1881) Lehrbuch der Gehirnkrankheiten für Aerzte und Studierende, vol II. Theodor Fischer, Kassel, pp 229–242

    Google Scholar 

  57. Victor M, Adams R, Collins G (1989) The Wernicke–Korsakoff syndrome and related neurologic disorders due to alcoholism and malnutrition. F.A. Davies, Philadelphia

    Google Scholar 

  58. Caine D, Halliday GM, Kril JJ, Harper CG (1997) Operational criteria for the classification of Chronic alcoholics: identification of Wernicke’s encephalopathy. J Neurol Neurosurg Psychiatry 62:51–60

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Thomson AD, Cook CC, Touquet R, Henry JA (2002) The Royal College of Physicians report on alcohol: guidelines for managing Wernicke’s encephalopathy in the accident and Emergency Department. Alcohol Alcohol 37:513–521

    CAS  PubMed  Google Scholar 

  60. Chu K, Kang DW, Kim HJ, Lee YS, Park SH (2002) Diffusion-weighted imaging abnormalities in Wernicke encephalopathy: reversible cytotoxic edema? Arch Neurol 59:123–127

    PubMed  Google Scholar 

  61. Sullivan EV, Pfefferbaum A (2009) Neuroimaging of the Wernicke–Korsakoff syndrome. Alcohol Alcohol 44:155–165

    PubMed Central  PubMed  Google Scholar 

  62. Gaitonde MK (1975) Conversion of [U-14C]threonine into 14C-labelled amino acids in the brain of thiamin-deficient rats. Biochem J 150:285–295

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Langlais PJ, Mair RG (1990) Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J Neurosci 10:1664–1674

    CAS  PubMed  Google Scholar 

  64. Armstrong-James M, Ross DT, Chen F, Ebner FF (1988) The effect of thiamine deficiency on the structure and physiology of the rat forebrain. Metab Brain Dis 3:91–124

    CAS  PubMed  Google Scholar 

  65. Watanabe I (1978) Pyrithiamine-induced acute thiamine-deficient encephalopathy in the mouse. Exp Mol Pathol 28:381–394

    CAS  PubMed  Google Scholar 

  66. Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol 30:75–90

    CAS  PubMed  Google Scholar 

  67. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    CAS  PubMed  Google Scholar 

  68. Hazell AS, Pannunzio P, Rama Rao KV, Pow DV, Rambaldi A (2003) Thiamine deficiency results in downregulation of the GLAST glutamate transporter in cultured astrocytes. Glia 43:175–184

    PubMed  Google Scholar 

  69. Hazell AS, Sheedy D, Oanea R, Aghourian M, Sun S, Jung JY, Wang D, Wang C (2010) Loss of astrocytic glutamate transporters in Wernicke encephalopathy. Glia 58:148–156

    PubMed Central  PubMed  Google Scholar 

  70. Pabst S, Hazzard JW, Antonin W, Südhof TC, Jahn R, Rizo J, Fasshauer D (2000) Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J Biol Chem 275:19808–19818

    CAS  PubMed  Google Scholar 

  71. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Südhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187

    CAS  PubMed  Google Scholar 

  72. Hazell AS, Wang C (2005) Downregulation of complexin I and complexin II in the medial thalamus is blocked by N-acetylcysteine in experimental Wernicke’s encephalopathy. J Neurosci Res 79:200–207

    CAS  PubMed  Google Scholar 

  73. Hazell AS, Wang D (2011) Identification of complexin II in astrocytes: a possible regulator of glutamate release in these cells. Biochem Biophys Res Commun 404:228–232

    CAS  PubMed  Google Scholar 

  74. McMahon HT, Missler M, Li C, Südhof TC (1995) Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83:111–119

    CAS  PubMed  Google Scholar 

  75. Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492

    CAS  PubMed  Google Scholar 

  76. Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    CAS  PubMed  Google Scholar 

  77. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    CAS  PubMed  Google Scholar 

  78. Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF (1995) Involvement of free radicals in excitotoxicity in vivo. J Neurochem 64:2239–2247

    CAS  PubMed  Google Scholar 

  79. Calingasan NY, Gibson GE (2000) Vascular endothelium is a site of free radical production and inflammation in areas of neuronal loss in thiamine-deficient brain. Ann NY Acad Sci 903:353–356

    CAS  PubMed  Google Scholar 

  80. Calingasan NY, Baker H, Sheu KF, Gibson GE (1995) Blood–brain barrier abnormalities in vulnerable brain regions during thiamine deficiency. Exp Neurol 134:64–72

    CAS  PubMed  Google Scholar 

  81. Torreilles F, Salman-Tabcheh S, Guérin M, Torreilles J (1999) Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev 30:153–163

    CAS  PubMed  Google Scholar 

  82. Desjardins P, Butterworth RF (2005) Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy. Mol Neurobiol 31:17–25

    CAS  PubMed  Google Scholar 

  83. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    CAS  PubMed  Google Scholar 

  84. Wang X, Wang B, Fan Z, Shi X, Ke ZJ, Luo J (2007) Thiamine deficiency induces endoplasmic reticulum stress in neurons. Neuroscience 144:1045–1056

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Gu Z, Nakamura T, Lipton SA (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol. 41(2–3):55–72

    CAS  PubMed  Google Scholar 

  86. Fiedorowicz M, Grieb P (2012) Nitrooxidative stress and neurodegeneration. In: González-Quevedo A (ed) Brain damage—bridging between basic research and clinics. InTech, Rijeka, pp 139–162

    Google Scholar 

  87. Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401

    CAS  PubMed  Google Scholar 

  88. Hazell AS, Butterworth RF (2009) Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol 44:141–147

    CAS  PubMed  Google Scholar 

  89. Hazell AS (2009) Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochem Int 55:129–135

    CAS  PubMed  Google Scholar 

  90. Hong KS, Kang DW, Cho YJ, Hwang YJ, Hur G (2002) Diffusion-weighted magnetic resonance imaging in Wernicke’s encephalopathy. Acta Neurol Scand 105:132–134

    CAS  PubMed  Google Scholar 

  91. Liu YT, Fuh JL, Lirng JF, Li AF, Ho DM, Wang SJ (2006) Correlation of magnetic resonance images with neuropathology in acute Wernicke’s encephalopathy. Clin Neurol Neurosurg 108:682–687

    PubMed  Google Scholar 

  92. Marchetti B, Abbracchio MP (2005) To be or not to be (inflamed)—is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 26:517–525

    CAS  PubMed  Google Scholar 

  93. Kohman RA, Rhodes JS (2013) Neurogenesis, inflammation and behavior. Brain Behav Immun 27:22–32

    CAS  PubMed  Google Scholar 

  94. Graeber MB, Streit WJ (1990) Microglia: immune network in the CNS. Brain Pathol 1:2–5

    CAS  PubMed  Google Scholar 

  95. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    CAS  PubMed  Google Scholar 

  96. Wang D, Hazell AS (2010) Microglial activation is a major contributor to neurologic dysfunction in thiamine deficiency. Biochem Biophys Res Commun 402:123–128

    CAS  PubMed  Google Scholar 

  97. Neri M, Cantatore S, Pomara C, Riezzo I, Bello S, Turillazzi E, Fineschi V (2011) Immunohistochemical expression of proinflammatory cytokines IL-1β, IL-6, TNF-α and involvement of COX-2, quantitatively confirmed by Western blot analysis, in Wernicke’s encephalopathy. Pathol Res Pract 207:652–658

    CAS  PubMed  Google Scholar 

  98. Vemuganti R, Kalluri H, Yi JH, Bowen KK, Hazell AS (2006) Gene expression changes in thalamus and inferior colliculus associated with inflammation, cellular stress, metabolism and structural damage in thiamine deficiency. Eur J Neurosci 23:1172–1188

    PubMed  Google Scholar 

  99. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    CAS  PubMed  Google Scholar 

  100. Cardinaux JR, Allaman I, Magistretti PJ (2000) Pro-inflammatory cytokines induce the transcription factors C/EBPbeta and C/EBPdelta in astrocytes. Glia 29:91–97

    CAS  PubMed  Google Scholar 

  101. Hakim AM (1986) Effect of thiamine deficiency and its reversal on cerebral blood flow in the rat. Observations on the phenomena of hyperperfusion, “no reflow,” and delayed hypoperfusion. J Cereb Blood Flow Metab 6:79–85

    CAS  PubMed  Google Scholar 

  102. Lleo A, Galea E, Sastre M (2007) Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell Mol Life Sci 64:1403–1418

    CAS  PubMed  Google Scholar 

  103. Jhala SS, Wang D, Hazell AS (2011) Loss of the glutamate transporter splice-variant GLT-1b in inferior colliculus and its prevention by ceftriaxone in thiamine deficiency. Neurochem Int 58:558–563

  104. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

  105. Luna-Medina R, Cortes-Canteli M, Sanchez-Galiano S, Morales-Garcia JA, Martinez A, Santos A, Perez-Castillo A (2007) NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders. J Neurosci 27:5766–5776

    CAS  PubMed  Google Scholar 

  106. Waldmeier PC (2003) Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 27:303–321

    CAS  PubMed  Google Scholar 

  107. Papa SM, Chase TN (1996) Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol 39:574–578

    CAS  PubMed  Google Scholar 

  108. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(Suppl):S42–S50

    PubMed  Google Scholar 

  109. Sierra A, Encinas JM, Maletic-Savatic M (2011) Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci 5:47

    PubMed Central  PubMed  Google Scholar 

  110. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    CAS  PubMed  Google Scholar 

  111. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    CAS  PubMed  Google Scholar 

  112. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101:343–347

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100:7925–7930

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci USA 100:9023–9027

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH (2006) Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 59:81–91

    PubMed  Google Scholar 

  116. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    CAS  PubMed  Google Scholar 

  117. Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21:1534–1550

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Zhao N, Zhong C, Wang Y, Zhao Y, Gong N, Zhou G, Xu T, Hong Z (2008) Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early pre-pathological lesion stage. Neurobiol Dis 29:176–185

    PubMed  Google Scholar 

  119. Vetreno RP, Klintsova A, Savage LM (2011) Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke–Korsakoff syndrome. Brain Res 1391:132–146

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Hazell AS, Wang D, Oanea R, Sun S, Aghourian M, Yong JJ (2014) Pyrithiamine-induced thiamine deficiency alters proliferation and neurogenesis in both neurogenic and vulnerable areas of the rat brain. Metab Brain Dis 29:145–152

    CAS  PubMed  Google Scholar 

  121. Voloboueva LA, Lee SW, Emery JF, Palmer TD, Giffard RG (2010) Mitochondrial protection attenuates inflammation-induced impairment of neurogenesis in vitro and in vivo. J Neurosci 30:12242–12251

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Gold M, Chen MF, Johnson K (1995) Plasma and red blood cell thiamine deficiency in patients with dementia of the Alzheimer’s type. Arch Neurol 52:1081–1086

    CAS  PubMed  Google Scholar 

  123. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45:836–840

    CAS  PubMed  Google Scholar 

  124. Singh N, Cohen CA, Rzigalinski BA (2007) Treatment of neurodegenerative disorders with radical nanomedicine. Ann N Y Acad Sci 1122:219–230

    CAS  PubMed  Google Scholar 

  125. Re F, Gregori M, Masserini M (2012) Nanotechnology for neurodegenerative disorders. Nanomedicine 8(Suppl 1):S51–S58

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The senior author (A.S.H.) is supported by the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Hazell.

Additional information

Special Issue: In honor of Michael Norenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, E., Hazell, A.S. Thiamine Deficiency: An Update of Pathophysiologic Mechanisms and Future Therapeutic Considerations. Neurochem Res 40, 353–361 (2015). https://doi.org/10.1007/s11064-014-1430-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1430-z

Keywords

Navigation