Skip to main content
Log in

SIRT3 Attenuates MPTP-Induced Nigrostriatal Degeneration Via Enhancing Mitochondrial Antioxidant Capacity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, which is characterized by progressive degeneration of nigrostriatal dopaminergic neurons. There is a growing consensus that mitochondrial dysfunction and oxidative stress play a crucial role in PD pathogenesis. Sirtuin3 (SIRT3) is the major mitochondria NAD+-dependent deacetylase that acts as a regulator of mitochondrial protein function; it is essential for maintaining mitochondrial integrity. Although SIRT3 was reported to have anti-oxidative stress activity in an in vitro study, there is no explicit in vivo evidence for the involvement of SIRT3 in the etiology of PD. The present study shows that SIRT3 null mice do not exhibit motor and non-motor deficits compared with wild-type controls. However, SIRT3 deficiency dramatically exacerbated the degeneration of nigrostriatal dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. SIRT3 null mice exposed to MPTP also exhibited decreased superoxide dismutase 2, a specific mitochondrial antioxidant enzyme, and reduced glutathione peroxidase expression compared with wild-type controls. Taken together, these findings strongly support that SIRT3 has a possible role in MPTP-induced neurodegeneration via preserving free radical scavenging capacity in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  CAS  PubMed  Google Scholar 

  2. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–2066

    Article  CAS  PubMed  Google Scholar 

  3. Perier C, Vila M (2012) Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009332

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  PubMed  Google Scholar 

  5. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    Article  CAS  PubMed  Google Scholar 

  6. Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging Cell 9(2):285–290

    Article  CAS  PubMed  Google Scholar 

  7. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bell EL, Guarente L (2011) The SirT3 divining rod points to oxidative stress. Mol Cell 42(5):561–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ahn BH, Kim HS, Song S, Lee IH, Liu J et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105:14447–14452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–667

    Article  CAS  PubMed  Google Scholar 

  11. Someya S, Yu W, Hallows WC, Xu J, Vann JM et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH et al (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40:893–904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y et al (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 1(9):771–783

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2(1):141–151

    Article  CAS  PubMed  Google Scholar 

  16. Chiba K, Peterson LA, Castagnoli KP, Trevor AJ, Castagnoli N Jr (1985) Studies on the molecular mechanism of bioactivation of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Drug Metab Dispos 13(3):342–347

    CAS  PubMed  Google Scholar 

  17. Cleeter MW, Cooper JM, Schapira AH (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58(2):786–789

    Article  CAS  PubMed  Google Scholar 

  18. Hantraye P, Brouillet E, Ferrante R, Palfi S, Dolan R et al (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 2(9):1017–1021

    Article  CAS  PubMed  Google Scholar 

  19. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS et al (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27(24):8807–8814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4(9):775–790

    Article  CAS  PubMed  Google Scholar 

  21. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  PubMed  Google Scholar 

  22. Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G et al (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76(5):1265–1274

    Article  CAS  PubMed  Google Scholar 

  23. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    CAS  PubMed  Google Scholar 

  24. Flynn JM, Melov S (2013) SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 62:4–12

    Article  CAS  PubMed  Google Scholar 

  25. Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N et al (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1):41–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Piao Y, Kim HG, Oh MS, Pak YK (2012) Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+)-induced mitochondrial dysfunctions in neuronal cells. Biochim Biophys Acta 1820(5):577–585

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Zhou JY, Chin MH, Schepmoes AA, Petyuk VA et al (2010) Region-specific protein abundance changes in the brain of MPTP-induced Parkinson’s disease mouse model. J Proteome Res 9(3):1496–1509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA et al (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46(4):598–605

    Article  CAS  PubMed  Google Scholar 

  30. Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP et al (2000) MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet 30(3):171–182

    Article  CAS  PubMed  Google Scholar 

  31. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  PubMed  Google Scholar 

  32. Piantadosi CA, Suliman HB (2012) Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 53(11):2043–2053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ghosh N, Ghosh R, Mandal SC (2011) Antioxidant protection: a promising therapeutic intervention in neurodegenerative disease. Free Radic Res 45(8):888–905

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Shui-Ying Ng and CNR Imaging Core for excellent technical assistance on microscope equipment, Dr. Jennifer Newman and CNR Behavior Core for instruction on behavior tests, and Dr.Yongjie Yang for the use of his laboratory’s freezing microtome equipment. Also we express thanks to Prof. Rob Jackson for his critical reading of the manuscript. This study was supported by the Tufts University Department of Neuroscience startup fund (to G.D.) and the Tufts Center for Neuroscience Research Pilot Award (to G.D.).

Conflict of interest

The authors declare there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gizem Donmez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Peritore, C., Ginsberg, J. et al. SIRT3 Attenuates MPTP-Induced Nigrostriatal Degeneration Via Enhancing Mitochondrial Antioxidant Capacity. Neurochem Res 40, 600–608 (2015). https://doi.org/10.1007/s11064-014-1507-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1507-8

Keywords

Navigation