Skip to main content
Log in

Resveratrol Protects Hippocampal Astrocytes Against LPS-Induced Neurotoxicity Through HO-1, p38 and ERK Pathways

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Resveratrol, a phytoalexin found in grapes and wine, exhibits antioxidant, anti-inflammatory, anti-aging and antitumor activities. Resveratrol also protects neurons and astrocytes in several neurological disease models. Astrocytes are responsible for modulating neurotransmitter systems, synaptic information, ionic homeostasis, energy metabolism, antioxidant defense and inflammatory response. In previous work, we showed that resveratrol modulates important glial functions, including glutamate uptake, glutamine synthetase activity, glutathione (GSH) levels and inflammatory response. Furthermore, astrocytes express toll-like receptors that specifically recognize lipopolysaccharide (LPS), which has been widely used to study experimentally inflammatory response. In this sense, LPS may stimulate pro-inflammatory cytokines release and oxidative stress. Moreover, there is interplay between these signals through signaling pathways such as NFκB, HO-1 and MAPK. Thus, here, we evaluated the effects of resveratrol on LPS-stimulated inflammatory response in hippocampal primary astrocyte cultures and the putative role of HO-1, p38 and ERK pathways in the protective effect of resveratrol. LPS increased the levels of TNF-α, IL-1β, IL-6 and IL-18 and resveratrol prevented these effects. Resveratrol also prevented the oxidative and nitrosative stress induced by LPS as well as the decrease in GSH content. Additionally, we demonstrated the involvement of NFκB, HO-1, p38 and ERK signaling pathways in the protective effect of resveratrol, providing the first mechanistic explanation for these effects in hippocampal astrocytes. Our findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with anti-inflammatory and antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. doi:10.1016/j.cmet.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  2. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689. doi:10.1038/ncpneuro0355

    Article  CAS  PubMed  Google Scholar 

  3. He F, Sun YE (2007) Glial cells more than support cells? Int J Biochem Cell Biol 39(4):661–665. doi:10.1016/j.biocel.2006.10.022

    Article  CAS  PubMed  Google Scholar 

  4. Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7. doi:10.1007/978-1-61779-452-0_1

    Article  CAS  PubMed  Google Scholar 

  5. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121(1):4–27. doi:10.1111/j.1471-4159.2012.07664.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743. doi:10.1016/j.tins.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  7. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87. doi:10.1016/j.tins.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  8. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. doi:10.1016/j.it.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  9. Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59(2):242–255. doi:10.1002/glia.21094

    Article  PubMed  Google Scholar 

  10. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439. doi:10.1038/nri2565

    Article  CAS  PubMed  Google Scholar 

  11. Zong Y, Sun L, Liu B, Deng YS, Zhan D, Chen YL, He Y, Liu J, Zhang ZJ, Sun J, Lu D (2012) Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PLoS One 7(8):e44107. doi:10.1371/journal.pone.0044107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Guerra MC, Tortorelli LS, Galland F, Da Re C, Negri E, Engelke DS, Rodrigues L, Leite MC, Goncalves CA (2011) Lipopolysaccharide modulates astrocytic S100B secretion: a study in cerebrospinal fluid and astrocyte cultures from rats. J Neuroinflammation 8:128. doi:10.1186/1742-2094-8-128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Carpentier PA, Duncan DS, Miller SD (2008) Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 22(2):140–147. doi:10.1016/j.bbi.2007.08.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, Song R, Wang WM, Xiao CJ, Lu D (2012) Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 7(2):e32195. doi:10.1371/journal.pone.0032195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533–2545. doi:10.1096/fj.09-149997

    Article  CAS  PubMed  Google Scholar 

  16. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410(6824):37–40. doi:10.1038/35065000

    Article  CAS  PubMed  Google Scholar 

  17. Rigon AP, Cordova FM, Oliveira CS, Posser T, Costa AP, Silva IG, Santos DA, Rossi FM, Rocha JB, Leal RB (2008) Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38 MAPK. Neurotoxicology 29(4):727–734. doi:10.1016/j.neuro.2008.04.017

    Article  CAS  PubMed  Google Scholar 

  18. Bramanti V, Tomassoni D, Bronzi D, Grasso S, Curro M, Avitabile M, Li Volsi G, Renis M, Ientile R, Amenta F, Avola R (2010) Alpha-lipoic acid modulates GFAP, vimentin, nestin, cyclin D1 and MAP-kinase expression in astroglial cell cultures. Neurochem Res 35(12):2070–2077. doi:10.1007/s11064-010-0256-6

    Article  CAS  PubMed  Google Scholar 

  19. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506. doi:10.1038/nrd2060

    Article  CAS  PubMed  Google Scholar 

  20. Fremont L (2000) Biological effects of resveratrol. Life Sci 66(8):663–673. doi:10.1016/S0024-3205(99)00410-5

    Article  CAS  PubMed  Google Scholar 

  21. Bastianetto S, Menard C, Quirion R (2014) Neuroprotective action of resveratrol. Biochim Biophys Acta. doi:10.1016/j.bbadis.2014.09.011

    PubMed  Google Scholar 

  22. Quincozes-Santos A, Bobermin LD, Latini A, Wajner M, Souza DO, Goncalves CA, Gottfried C (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS One 8(5):e64372. doi:10.1371/journal.pone.0064372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Quincozes-Santos A, Gottfried C (2011) Resveratrol modulates astroglial functions: neuroprotective hypothesis. Ann N Y Acad Sci 1215:72–78. doi:10.1111/j.1749-6632.2010.05857.x

    Article  CAS  PubMed  Google Scholar 

  24. Bobermin LD, Quincozes-Santos A, Guerra MC, Leite MC, Souza DO, Goncalves CA, Gottfried C (2012) Resveratrol prevents ammonia toxicity in astroglial cells. PLoS One 7(12):e52164. doi:10.1371/journal.pone.0052164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17(14):1975–1985. doi:10.1096/fj.03-0168rev

    Article  CAS  PubMed  Google Scholar 

  26. Delmas D, Jannin B, Latruffe N (2005) Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 49(5):377–395. doi:10.1002/mnfr.200400098

    Article  CAS  PubMed  Google Scholar 

  27. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220. doi:10.1126/science.275.5297.218

    Article  CAS  PubMed  Google Scholar 

  28. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342. doi:10.1038/nature05354

    Article  CAS  PubMed  Google Scholar 

  29. Bellaver B, de Souza DG, Souza DO, Quincozes-Santos A (2013) Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol In Vitro 28(4):479–484. doi:10.1016/j.tiv.2014.01.006

    Article  Google Scholar 

  30. Tiwari V, Chopra K (2011) Resveratrol prevents alcohol-induced cognitive deficits and brain damage by blocking inflammatory signaling and cell death cascade in neonatal rat brain. J Neurochem 117(4):678–690. doi:10.1111/j.1471-4159.2011.07236.x

    CAS  PubMed  Google Scholar 

  31. Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, Raza SS, Khan A, Javed H, Vaibhav K, Islam F (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 1328:139–151. doi:10.1016/j.brainres.2010.02.031

    Article  CAS  PubMed  Google Scholar 

  32. Huang TC, Lu KT, Wo YY, Wu YJ, Yang YL (2011) Resveratrol protects rats from Abeta-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6(12):e29102. doi:10.1371/journal.pone.0029102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L (2009) Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 34(8):1393–1400. doi:10.1007/s11064-009-9920-0

    Article  CAS  PubMed  Google Scholar 

  34. Sakata Y, Zhuang H, Kwansa H, Koehler RC, Dore S (2010) Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp Neurol 224(1):325–329. doi:10.1016/j.expneurol.2010.03.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Battastini AM, Pohlmann AR, Guterres SS, Salbego C (2013) Lipid-core nanocapsules improve the effects of resveratrol against Abeta-induced neuroinflammation. J Biomed Nanotechnol 9(12):2086–2104. doi:10.1166/jbn.2013.1709

    Article  CAS  PubMed  Google Scholar 

  36. Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matte A, Battastini AM, Pohlmann AR, Guterres SS, Salbego C (2013) Neuroprotective effects of resveratrol against Abeta administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol 47(3):1066–1080. doi:10.1007/s12035-013-8401-2

    Article  CAS  PubMed  Google Scholar 

  37. Quincozes-Santos A, Nardin P, de Souza DF, Gelain DP, Moreira JC, Latini A, Goncalves CA, Gottfried C (2009) The janus face of resveratrol in astroglial cells. Neurotox Res 16(1):30–41. doi:10.1007/s12640-009-9042-0

    Article  CAS  PubMed  Google Scholar 

  38. dos Santos AQ, Nardin P, Funchal C, de Almeida LM, Jacques-Silva MC, Wofchuk ST, Goncalves CA, Gottfried C (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453(2):161–167. doi:10.1016/j.abb.2006.06.025

    Article  PubMed  Google Scholar 

  39. de Almeida LM, Pineiro CC, Leite MC, Brolese G, Tramontina F, Feoli AM, Gottfried C, Goncalves CA (2007) Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures. Cell Mol Neurobiol 27(5):661–668. doi:10.1007/s10571-007-9152-2

    Article  PubMed  Google Scholar 

  40. Vieira de Almeida LM, Pineiro CC, Leite MC, Brolese G, Leal RB, Gottfried C, Goncalves CA (2008) Protective effects of resveratrol on hydrogen peroxide induced toxicity in primary cortical astrocyte cultures. Neurochem Res 33(1):8–15. doi:10.1007/s11064-007-9399-5

    Article  PubMed  Google Scholar 

  41. Bramanti V, Tomassoni D, Grasso S, Bronzi D, Napoli M, Campisi A, Li Volti G, Ientile R, Amenta F, Avola R (2012) Cholinergic precursors modulate the expression of heme oxigenase-1, p21 during astroglial cell proliferation and differentiation in culture. Neurochem Res 37(12):2795–2804. doi:10.1007/s11064-012-0873-3

    Article  CAS  PubMed  Google Scholar 

  42. Dore S (2005) Unique properties of polyphenol stilbenes in the brain: more than direct antioxidant actions; gene/protein regulatory activity. Neurosignals 14(1–2):61–70. doi:10.1159/000085386

    CAS  PubMed  Google Scholar 

  43. Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E (2008) Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33(12):2444–2471. doi:10.1007/s11064-008-9775-9

    Article  CAS  PubMed  Google Scholar 

  44. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13(11):1649–1663. doi:10.1089/ars.2010.3216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2014) Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol In Vitro 28(4):479–484. doi:10.1016/j.tiv.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  46. Quincozes-Santos A, Bobermin LD, Souza DG, Bellaver B, Goncalves CA, Souza DO (2014) Guanosine protects C6 astroglial cells against azide-induced oxidative damage: a putative role of heme oxygenase 1. J Neurochem 130(1):61–74. doi:10.1111/jnc.12694

    Article  CAS  PubMed  Google Scholar 

  47. Quincozes-Santos A, Bobermin LD, de Souza DG, Bellaver B, Goncalves CA, Souza DO (2013) Gliopreventive effects of guanosine against glucose deprivation in vitro. Purinergic Signal. doi:10.1007/s11302-013-9377-0

    PubMed Central  PubMed  Google Scholar 

  48. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. doi:10.1385/0-89603-472-0:347

    CAS  PubMed  Google Scholar 

  49. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  50. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505. doi:10.1016/j.bcp.2006.04.011

    Article  CAS  PubMed  Google Scholar 

  51. Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF (2005) Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 5(1):185–193. doi:10.1016/j.intimp.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  52. Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O (2010) Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation 7:16. doi:10.1186/1742-2094-7-16

    Article  PubMed Central  PubMed  Google Scholar 

  53. de Rivero Vaccari JP, Dietrich WD, Keane RW (2014) Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab 34(3):369–375. doi:10.1038/jcbfm.2013.227

    Article  PubMed Central  PubMed  Google Scholar 

  54. Bossu P, Ciaramella A, Salani F, Vanni D, Palladino I, Caltagirone C, Scapigliati G (2010) Interleukin-18, from neuroinflammation to Alzheimer’s disease. Curr Pharm Des 16(38):4213–4224. doi:10.2174/138161210794519147

    Article  CAS  PubMed  Google Scholar 

  55. Tukhovskaya EA, Turovsky EA, Turovskaya MV, Levin SG, Murashev AN, Zinchenko VP, Godukhin OV (2014) Anti-inflammatory cytokine interleukin-10 increases resistance to brain ischemia through modulation of ischemia-induced intracellular Ca(2)(+) response. Neurosci Lett 571:55–60. doi:10.1016/j.neulet.2014.04.046

    Article  CAS  PubMed  Google Scholar 

  56. Green HF, Nolan YM (2012) GSK-3 mediates the release of IL-1beta, TNF-alpha and IL-10 from cortical glia. Neurochem Int 61(5):666–671. doi:10.1016/j.neuint.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  57. Hu D, Wan L, Chen M, Caudle Y, LeSage G, Li Q, Yin D (2014) Essential role of IL-10/STAT3 in chronic stress-induced immune suppression. Brain Behav Immun 36:118–127. doi:10.1016/j.bbi.2013.10.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Zhang F, Shi JS, Zhou H, Wilson B, Hong JS, Gao HM (2010) Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol 78(3):466–477. doi:10.1124/mol.110.064535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Collino M, Aragno M, Mastrocola R, Benetti E, Gallicchio M, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006) Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free Radic Biol Med 41(4):579–589. doi:10.1016/j.freeradbiomed.2006.04.030

    Article  CAS  PubMed  Google Scholar 

  60. Lee EO, Park HJ, Kang JL, Kim HS, Chong YH (2010) Resveratrol reduces glutamate-mediated monocyte chemotactic protein-1 expression via inhibition of extracellular signal-regulated kinase 1/2 pathway in rat hippocampal slice cultures. J Neurochem 112(6):1477–1487. doi:10.1111/j.1471-4159.2009.06564.x

    Article  CAS  PubMed  Google Scholar 

  61. Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang Z, Wang Z, Wang JM, Le Y (2010) Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation 7:46. doi:10.1186/1742-2094-7-46

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kakita H, Aoyama M, Hussein MH, Kato S, Suzuki S, Ito T, Togari H, Asai K (2009) Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-kappaB signaling in cultured astrocytes. Toxicol Appl Pharmacol 238(1):56–63. doi:10.1016/j.taap.2009.04.014

    Article  CAS  PubMed  Google Scholar 

  63. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34(5):269–281. doi:10.1016/j.tins.2011.02.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 20(10):1589–1598. doi:10.1111/j.1471-4159.2009.06564.x

    Article  CAS  PubMed  Google Scholar 

  65. Hamby ME, Gragnolati AR, Hewett SJ, Hewett JA (2008) TGF beta 1 and TNF alpha potentiate nitric oxide production in astrocyte cultures by recruiting distinct subpopulations of cells to express NOS-2. Neurochem Int 52(6):962–971. doi:10.1016/j.neuint.2007.10.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Arredondo F, Echeverry C, Abin-Carriquiry JA, Blasina F, Antunez K, Jones DP, Go YM, Liang YL, Dajas F (2010) After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic Biol Med 49(5):738–747. doi:10.1016/j.freeradbiomed.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  67. Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, Kraft AD, Lee JM, Li J, Johnson JA (2009) The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 11(3):497–508. doi:10.1089/ARS.2008.2242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Financiadora de Estudos e Projetos (FINEP)—IBN Net (Instituto Brasileiro de Neurociências) 01.06.0842-00, Federal University of Rio Grande do Sul (UFRGS) and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCTEN/CNPq), Brazil.

Conflict of interest

The authors declare there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Quincozes-Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellaver, B., Souza, D.G., Bobermin, L.D. et al. Resveratrol Protects Hippocampal Astrocytes Against LPS-Induced Neurotoxicity Through HO-1, p38 and ERK Pathways. Neurochem Res 40, 1600–1608 (2015). https://doi.org/10.1007/s11064-015-1636-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1636-8

Keywords

Navigation