Skip to main content

Advertisement

Log in

Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury, infection, and other stimuli that threaten neuronal survival. Microglia activation plays an important role in neurodegenerative diseases. Neochlorogenic acid (NCA) is a natural polyphenolic compound found in dried fruits and other plants. Although previous studies have shown that phenolic acids including NCA have outstanding antioxidant, antibacterial, antiviral, and antipyretic activities, there has not yet been investigated for anti-inflammatory effects. Therefore, for the first time we have examined the potential of NCA to inhibit microglial activation and pro-inflammatory responses in the brain. We found that lipopolysaccharide-induced inducible nitric oxide synthase, and cyclooxygenase-2 expression, and nitric oxide formation was suppressed by NCA in a dose-dependent manner in BV2 microglia. NCA also inhibited the production of pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1 beta. Furthermore, phosphorylated nuclear factor-kappa B p65 and p38 mitogen-activated protein kinase activation were blocked by NCA. Taken together, these results suggest that NCA exerts neuroprotective effects through the inhibition of pro-inflammatory pathways in activated microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: Scapegoat, saboteur, or something else? Science 339:156–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanism. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  3. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  4. Ock J, Han HS, Hong SH, Lee SY, Han YM, Kwon BM, Suk K (2010) Obovatal attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br J Pharmacol 159:1646–1662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    Article  PubMed  Google Scholar 

  6. Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17:13–19

    Article  CAS  PubMed  Google Scholar 

  7. Das S, Basu A (2008) Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res 86:1199–1208

    Article  CAS  PubMed  Google Scholar 

  8. Lue LF, Kuo YM, Beach T, Walker DG (2010) Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol 41:115–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Long-Smith CM, Sullivan AM, Nolan YM (2009) The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 89:227–287

    Article  Google Scholar 

  10. Glass CK, Saijo K, Winner B, Matchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Infante R, Contador L, Rubil P, Aros D, Pena-Neira Á (2011) Postharvest sensory and phenolic characterization of ‘Elegant Lady’ and ‘Carson’ peaches. Chil J Agric Res 71:445–451

    Article  Google Scholar 

  12. Chen Y, Li SG, Lin XH, Luo HB, Li GG, Yao H (2008) On-line screening and identification of radical scavenging compounds extracted from Flos Lonicerae by LC-DAD-TOF-MS. Chromatographia 68:327–333

    Article  CAS  Google Scholar 

  13. Hung XM, Na M, Thuong PT, Su NA, Sok D, Song KS, Seong YH, Bae K (2006) Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J Ethnopharmacol 108:188–192

    Article  CAS  PubMed  Google Scholar 

  14. Mishima S, Yoshida C, Akino S, Sakamoto T (2005) Antihypertensive effects of Brazillian propolis: identification of caffeoylquinic acids as constituents involved in the hypotension in spontaneously hypertensive rats. Biol Pharm Bull 28:1909–1914

    Article  CAS  PubMed  Google Scholar 

  15. Koo HJ, Lim KH, Jung HJ, Park EH (2006) Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J Ethnopharmacol 103:496–500

    Article  CAS  PubMed  Google Scholar 

  16. Korhnen R, Lahti A, Hämäläinen M, Kankaanranta H, Moilanen E (2002) Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Mol Pharmacol 62:698–704

    Article  Google Scholar 

  17. Liu B, Hong J-s (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol 304:1–7

    CAS  Google Scholar 

  18. Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54:99–125

    Article  CAS  PubMed  Google Scholar 

  19. Rivest S (2011) The promise of anti-inflammatory therapies for CNS injuries and diseases. Expert Rev Neurother 11:783–786

    Article  PubMed  Google Scholar 

  20. Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13

    Article  CAS  PubMed  Google Scholar 

  21. Brown GC, Borutaite V (2002) Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med 33:1440–1450

    Article  CAS  PubMed  Google Scholar 

  22. Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63:901–910

    CAS  PubMed  Google Scholar 

  23. Merson TD, Binder MD, Kilpatrik TJ (2010) Role of cytokines as mediators and regulators of microglia activity in inflammatory demylination of the CNS. Neuromol Med 12:99–132

    Article  CAS  Google Scholar 

  24. Hoozemans JJ, Veerhuis R, Rozemuller JM, Eikelenboom P (2006) Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int J Dev Neurosci 24:157–165

    Article  CAS  PubMed  Google Scholar 

  25. Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokines release. Pharmacol Ther 109:210–226

    Article  CAS  PubMed  Google Scholar 

  26. He FQ, Qiu BY, Zhang XH, Li TK, Xie Q, Cui DJ et al (2011) Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β (1–42). Brain Res 1384:89–96

    Article  CAS  PubMed  Google Scholar 

  27. Yeo SJ, Yoo JG, Yi AK (2003) Myeloid differentiation factor 88-dependent post-necrosis factor-alpha receptor- associated factor 6, a diverging point in the Toll-like receptor 9-signaling. J Biol Chem 278:40590–40600

    Article  CAS  PubMed  Google Scholar 

  28. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Res Immunol 27:693–733

    Article  CAS  Google Scholar 

  29. Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M (2009) MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec 292:1902–1913

    Article  CAS  Google Scholar 

  30. Krementsov DN, Thornton TM, Teuscher C, Rincon M (2013) The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol 33:3728–3734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Branger J, van den Blink B, Weijer S, Madwed J, Bos CL et al (2006) Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. J Immunol 168:4070–4077

    Article  Google Scholar 

  32. Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6:532–540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korea Food Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyoung Hur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Choi, SY., Lee, P. et al. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells. Neurochem Res 40, 1792–1798 (2015). https://doi.org/10.1007/s11064-015-1659-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1659-1

Keywords

Navigation