Skip to main content

Advertisement

Log in

Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood–brain barrier permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Broderick JP, Brott T, Tomsick T, Miller R, Huster G (1993) Intracerebral hemorrhage more than twice as common as subarachnoid hemorrhage. J Neurosurg 78:188–191

    Article  CAS  PubMed  Google Scholar 

  2. Broderick J, Connolly S, Feldmann E et al (2007) Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Stroke 38:2001–2023

    Article  PubMed  Google Scholar 

  3. Zia E, Engstrom G, Svensson PJ, Norrving B, Pessah-Rasmussen H (2009) Three-year survival and stroke recurrence rates in patients with primary intracerebral hemorrhage. Stroke 40:3567–3573

    Article  PubMed  Google Scholar 

  4. Balami JS, Buchan AM (2012) Complications of intracerebral haemorrhage. Lancet Neurol 11(1):101–118

    Article  PubMed  Google Scholar 

  5. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8):720–731

    Article  CAS  PubMed  Google Scholar 

  6. Adeoye O, Broderick JP (2010) Advances in the management of intracerebral hemorrhage. Nat Rev Neurol 6(11):593–601

    Article  CAS  PubMed  Google Scholar 

  7. Masliah E, Armasolo F, Veinbergs I, Mallory M, Samuel W (1999) Cerebrolysin ameliorates performance deficits, and neuronal damage in apolipoprotein E-deficient mice. Pharmacol Biochem Behav 62:239–245

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Tung YC, Li B, Iqbal K, Grundke-Iqbal I (2007) Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiol Aging 28:1148–1162

    Article  CAS  PubMed  Google Scholar 

  9. Wronski R, Kronawetter S, Hutter-Paier B, Crailsheim K, Windisch M (2000) A brain derived peptide preparation reduces the translation dependent loss of a cytoskeletal protein in primary cultured chicken neurons. J Neural Transm Suppl 59:263–272

    CAS  PubMed  Google Scholar 

  10. Heiss WD, Brainin M, Bornstein NM, Tuomilehto J, Hong Z (2012) Cerebrolysin in patients with acute ischemic stroke in Asia: results of a double-blind, placebo-controlled randomized trial. Stroke 43(3):630–636

    Article  CAS  PubMed  Google Scholar 

  11. Amiri-Nikpour MR, Nazarbaghi S, Ahmadi-Salmasi B, Mokari T, Tahamtan U, Rezaei Y (2014) Cerebrolysin effects on neurological outcomes and cerebral blood flow in acute ischemic stroke. Neuropsychiatr Dis Treat 10:2299–2306

    PubMed  PubMed Central  Google Scholar 

  12. Shi Y, Ding S, Deng B, Wang Q (1990) Clinical studies with Cerebrolysin in the treatment of acute cerebral hemorrhage. Chin J Nervous Mental Dis 16(4):228–230

    Google Scholar 

  13. Bajenaru O, Tiu C, Moessler H et al (2010) Efficacy and safety of Cerebrolysin in patients with hemorrhagic stroke. J Med Life 3(2):137–143

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang C, Chopp M, Cui Y et al (2010) Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke. J Neurosci Res 88(15):3275–3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xing S, Zhang J, Dang C et al (2014) Cerebrolysin reduces amyloid-beta deposits, apoptosis and autophagy in the thalamus and improves functional recovery after cortical infarction. J Neurol Sci 337:104–111

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Yi B, Ma J et al (2015) Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochem Res 40(1):195–203

    Article  PubMed  Google Scholar 

  17. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–635

    Article  CAS  PubMed  Google Scholar 

  18. Saria A, Lundberg JM (1983) Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 8(1):41–49

    Article  CAS  PubMed  Google Scholar 

  19. Shimamura N, Matchett G, Yatsushige H, Calvert JW, Ohkuma H, Zhang J (2006) Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke 37(7):1902–1909

    Article  CAS  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  21. Wang T, Zhao L, Guo Y, Zhang M, Pei H (2015) Picroside II inhibits neuronal apoptosis and improves the morphology and structure of brain tissue following cerebral ischemic injury in rats. PLoS One 10(4):e0124099

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sharma HS, Zimmermann-Meinzingen S, Johanson CE (2010) Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann NY Acad Sci 1199(1):125–137

    Article  CAS  PubMed  Google Scholar 

  23. Chu H, Tang Y, Dong Q (2013) Protection of vascular endothelial growth factor to brain edema following intracerebral hemorrhage and its involved mechanisms: effect of aquaporin-4. PLoS One 8(6):e66051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17(1):171–180

    CAS  PubMed  Google Scholar 

  25. Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95(20):11981–11986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verkman AS, Anderson MO, Papadopoulos MC (2014) Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 13(4):259–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manaenko A, Fathali N, Khatibi NH et al (2011) Arginine-vasopressin V1a receptor inhibition improves neurologic outcomes following an intracerebral hemorrhagic brain injury. Neurochem Int 58(4):542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun Z, Zhao Z, Zhao S et al (2009) Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo. Mol Biol Rep 36(5):1119–1127

    Article  CAS  PubMed  Google Scholar 

  29. Wu H, Zhang Z, Li Y et al (2010) Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema. Neurochem Int 57(3):248–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong Z, Wang B, Dai M et al (2013) Carvacrol alleviates cerebral edema by modulating AQP4 expression after intracerebral hemorrhage in mice. Neurosci Lett 555:24–29

    Article  CAS  PubMed  Google Scholar 

  31. Chu H, Ding H, Tang Y, Dong Q (2014) Erythropoietin protects against hemorrhagic blood–brain barrier disruption through the effects of aquaporin-4. Lab Invest 94(9):1042–1053

    Article  CAS  PubMed  Google Scholar 

  32. Sharma HS, Nyberg F, Gordh T, Alm P, Westman J (2000) Neurotrophic factors influence upregulation of constitutive isoform of heme oxygenase and cellular stress response in the spinal cord following trauma. An experimental study using immunohistochemistry in the rat. Amino Acids 19:351–361

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Chopp M, Meng Y et al (2013) Improvement in functional recovery with administration of Cerebrolysin after experimental closed head injury. J Neurosurg 118(6):1343–1355

    Article  CAS  PubMed  Google Scholar 

  34. Rothwell N, Allan S, Toulmond S (1997) The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest 100(11):2648–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou W, Liesz A, Bauer H et al (2013) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23(1):34–44

    Article  CAS  PubMed  Google Scholar 

  36. Barakat W, Safwet N, El-Maraghy NN, Zakaria MN (2014) Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade. Eur J Pharmacol 724:43–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Scientific Research funds of China (No. 81371345) and Beijing Nova program (XX2013059). We thank EVER Neuro Pharma Consulting (Beijing) Ltd for helping the pharmacy usage and Dr. Yilin Sun from the department of ultrapathology of Beijing Neurosurgical Institute and Ms. Qinqin Wang for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyang Liang or Hongtian Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Yang Yang and Yan Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, Y., Wang, Z. et al. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response. Neurochem Res 41, 748–757 (2016). https://doi.org/10.1007/s11064-015-1745-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1745-4

Keywords

Navigation