Skip to main content

Advertisement

Log in

Grape Seed Proanthocyanidin and Swimming Exercise Protects Against Cognitive Decline: A Study on M1 Acetylcholine Receptors in Aging Male Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Decline in cognition is one of the earliest signs of normal brain aging. Several dietary and non-pharmacological approaches have been tested to slow down this process. The aim of the present study was to assess the influence of grape seed proanthocyanidin extract (GSPE) either individually or in combination with swimming training on acetylcholine esterase activity (AChE) and m1 acetylcholine receptor (m1AChR) on the extent of cognitive decline with aging. The experimental protocol included the oral administration of GSPE (400 mg/kg body weight) for 14 weeks to 4 (adult) and 18-month-old (middle-aged) male Wistar rats along with swimming training. They were subjected to behavioral testing followed by biochemical and immunohistochemical analysis. The results demonstrated that GSPE supplementation and swimming training either individually or in combination had an improvement on acquisition and working memory with reduced AChE activity in the medial prefrontal cortex (mPFC) and hippocampus (HC). Immunohistochemical and qRT-PCR evaluation showed an increase in m1AChR protein and mRNA in the CA1 region of HC and also mPFC upon swimming training with GSPE treatment. These beneficial and synergistic effects of GSPE and swimming training are suggestive as interventions in modulating the cognitive function, with GSPE alone being more suitable for middle-aged individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC (2002) Aging causes a preferential loss of cholinergic innervation of characterized neocortical pyramidal neurons. Cereb Cortex 12:329–337. doi:10.1093/cercor/12.3.329

    Article  PubMed  Google Scholar 

  2. Bartus RT (2000) On neurodegenerative diseases, models and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529. doi:10.1006/exnr.2000.7397

    Article  CAS  PubMed  Google Scholar 

  3. Bymaster FP, McKinzie DL, Felder CC, Wess J (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28:437–442. doi:10.1371/journal.pone.0000651

    Article  CAS  PubMed  Google Scholar 

  4. Hu Y, Xia Z, Sun Q, Orsi A, Ress D (2005) A new approach to the pharmacological regulation of memory: sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-deficit rat models. Brain Res 1060:26–29. doi:10.1016/j.brainres.2005.08.019

    Article  CAS  PubMed  Google Scholar 

  5. Levey A, Edmunds S, Koliatsos V, Wiley R, Heiman C (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation in cholinergic innervations. J Neurosci 15:4077–4092

    CAS  PubMed  Google Scholar 

  6. Wisman LA, Sahin G, Maingay M, Leanza G, Kirik D (2008) Functional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memory. J Neurosci 28: 7797–7807. doi:10.1523/JneurosciI1885-08.2008

    Article  CAS  PubMed  Google Scholar 

  7. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NL, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nature Neurosci 6:51–58

    Article  CAS  PubMed  Google Scholar 

  8. Butcher AJ, Bradley SJ, Prihandoko R, Brooke SM, Mogg A, Bourgognon JM, Macedo-Hatch T, Edwards JM, Bottrill AR, Challiss RA, Broad LM, Felder CC, Tobin AB (2016) An antibody biosensor establishes the activation of the M1 muscarinic acetylcholine receptor during learning and memory. J Biol Chem 29:8862–8875. doi:10.1074/jbc.M115.681726

    Article  Google Scholar 

  9. Li R, Long C. Yang L (2015) Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders BioMed. Res Int. doi:10.1038/aps.2017.72

    Google Scholar 

  10. Ferreira AR, Furstenau L, Blanco E, Kornisiuk E, Sanchez G, Dariot D, eSilva MC, Cervenansky C, Jerusalinsky D, Quillfeldt JA (2003) Role of hippocampal M1 and M4 muscarnic receptor subtypes in memory consolidation in the rat. Pharmacol Biochem Behav 74:411–441. doi:10.1016/S0091-3057(02)01007-9

    Article  PubMed  Google Scholar 

  11. Fletcher BR, Baxter MG, Guzowski JF, Shapiro ML, Rapp PR (2007) Selective cholinergic depletion of the hippocampus spares both behaviourally induced Arc transcription and spatial learning and memory Hippocampus. 17: 227–234. doi:10.1002/hipo.20261

  12. Aine CJ, Sanfratello JC, Adair A, Knoefel JE, Caparihan A, Stephen JM (2011) Development and decline in memory functions in normal, pathological and healthy successful aging. Brain Topogr 24:323–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee I, Kesner RP (2003) Time-dependent relationship between the dorsal hippocampus and prefrontal cortex in spatial memory. J Neurosci 23:1517–1523

    CAS  PubMed  Google Scholar 

  14. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtefrmann A, Krugger K, Fromme A, Korsukewitz C, Floel A, Knecht S (2007) High impact running improves learning. Neurobiol Learn Mem 87:587–609. doi:10.1016/j.nim.2006.11.003

    Article  Google Scholar 

  15. van Praag H (2009) Exercise and the brain: something to chew on. Trends Neurosci 32:283–290. doi:10.1016/j.tins.2008.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gomez-Pinella F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9: 568–578. doi:10.1038/nm2421

    Article  Google Scholar 

  17. Fine AM (2000) Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications. Altern Med Rev 5:144–151

    CAS  PubMed  Google Scholar 

  18. Asha Devi S, Jolitha AB, Ishii N (2006) Grape seed proanthocyanidin extract (GSPE) and antioxidant defense in the brain of adult rats Med. Sci Monit 12:BR124-BR129

    Google Scholar 

  19. Asha Devi S, Chandrasekar BKS, Manjula KR, Ishii N (2011) Grape seed proanthocyanidin lowers brain oxidative stress in adult and middle-aged rats. Expt Geront 46:958–964. doi:10.1016/j.exger.2011.08.006

    Article  CAS  Google Scholar 

  20. Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS (2002) Vitamin E and cognitive decline in older persons. Arch Neurol 59:1125–1132. doi:10.1001/archneu.59.7.1125

    Article  PubMed  Google Scholar 

  21. Milgram NW, Head E, Zicker SC, Ikeda-Douglas CJ, Murphey H, Muggenburg B, Siwak C, Tapp D, Cotman CW (2005) Learning ability in beagle dogs is preserved by behavioral enrichment and dietary fortification: a two year longitudinal study. Neurobiol Aging 26:77–90. doi:10.1016/j.neurobiolaging.2004.02.04

    Article  CAS  PubMed  Google Scholar 

  22. Wang GW, Cai JX (2006) Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res 175:329–336. doi:10.1016/j.bbr.2006.09.002

    Article  PubMed  Google Scholar 

  23. Churchwell JC, Morris AM, Musso ND, Kesner RP (2010) Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol Learn Mem 93:415–421. doi:10.1016/j.nlm.2009.12.06.2009

    Article  PubMed  Google Scholar 

  24. Jay TM, Burette F, Laroche S (1996) Plasticity of the hippocampal prefrontal cortex synapses. J Physiol Paris 90:361–366. doi:10.1016/SO928-4257(97)87920-X

    Article  CAS  PubMed  Google Scholar 

  25. Zhao YM, Gao LP, Zhang HL, Guo JX, Guo PP (2014) Grape seed proanthocyanidin extract prevents DDP-induced testicular toxicity in rats. Food Funct 5:605–611. doi:10.1039/C3FO60486A

    Article  CAS  PubMed  Google Scholar 

  26. Margalef M, Pons Z, Bravo FI, Muguerza B, Arola-Arnal A (2015) Tissue distribution of rat flavanol metabolites at different doses. J Nutr Biochem 26:987–995. doi:10.1016/jnutbio-2015.04.006

    Article  CAS  PubMed  Google Scholar 

  27. Jolitha AB, Subramanyam MVV, Asha Devi S (2006) Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: studies on superoxide dismutase isoenzymes and protein oxidation status. ExpGeron 41:753–763. doi:10.1074/bc.M115.681726

    CAS  Google Scholar 

  28. Devi S.Asha, Ravi Kiran T (2004) Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. NeurobiolAging 25:501–508. doi:10.1016/S0197-4580(03)00112-X

    CAS  Google Scholar 

  29. Morellini F (2013) Spatial memory tasks in rodents: what do they model? Cell Tissue Res 354:273–286. doi:10.1007/s00441-013-1668-9

    Article  PubMed  Google Scholar 

  30. Deacon RM, Rawlins JN (2006) T-maze alternation in the rodent. Nature Protoc 1:7–12. doi:10.1038/nprot.2006.2

    Article  Google Scholar 

  31. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  32. Spijker S (2011) Dissection of rodent brain regions. In: Wan Li K (ed) Neuroproteomics, neuromethods. vol 57, Springer, New York, pp 13–26

    Chapter  Google Scholar 

  33. Ellman GL, Courtney KD, Andres V, Featherstone EM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:90–95. doi:10.1016/0006-2952(61)90145-9

    Article  Google Scholar 

  34. Lowry OH, Rosenberg NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  35. Cavarsan CF, Avanzi RDT, Quiroz CM, Xavier GF, Mello LE, Covolan L (2011) M1 acetylcholine receptor expression is decreased in hippocampal CA1 region of aged epileptic animals. Aging Dis 2:301–307. doi:10.14336/AD.2011.0816

    PubMed  PubMed Central  Google Scholar 

  36. Cannel MN, McMorland A, Soeller C (2006) Image enhancement by deconvolution. In: Pawley JE (ed) Handbook of biological confocal microscopy, 3rd edn. Springer Science and Business media, New York, pp 488–500

    Chapter  Google Scholar 

  37. Peng S, Zhang Y, Li G, Zhang D, Sun D, Fang Q (2012) The effect of sevoflurane on the expression of M1 acetylcholine receptor in the hippocampus and cognitive function of aged rats. Mol Cell Biochem 361:229–233. doi:10.1007/s11010-011-1107-8

    Article  CAS  PubMed  Google Scholar 

  38. Chen L, Wu F, Zhao A, Ge H, Zhan H (2016) Protection efficacy of the extract of Ginko biloba against the learning and memory damage of rats under repeated high sustained + GZ exposure. Evid Based Complement Alternat Med Article Vol. doi:10.1155/2016/6320586

    Google Scholar 

  39. Benthem L, Bolhuis JW, Leest JV, Stefens AB, Zock JP, Zulstgra WG (1994) Methods in measurement of energy expenditure and substrate concentration in swimming rats. Physiol Behav 56:151–159. doi:10.1016/0031-9384(94)90273-9

    Article  CAS  PubMed  Google Scholar 

  40. Bizon JL, LaSarge CL, Montgomery KS, McDermott AN, Setlow B, Griffith WH (2009) Spatial reference and working memory across the lifespan of male Fischer 344 rats. Neurobiol Aging 30:646–655. doi:10.1016/j.neurobiolaging.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  41. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtefrmann A, Krugger K, Fromme A, Korsukewitz C, Floel A, Knecht S (2007) High impact running improves learning. Neurobiol Learn Mem 87:587–609. doi:10.1016/jnlm.2006.11.003

    Article  Google Scholar 

  42. Adalbert R, Coleman MP (2013) Axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol 39:90–108. doi:10.1111/j.1365-29902012.01308x

    Article  CAS  PubMed  Google Scholar 

  43. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563. doi:10.1016/jbbr.2010.11.058

    Article  CAS  PubMed  Google Scholar 

  44. Ruan CJ, Si JY, Zhang L, Chen DH, Du GH, Sun L (2009) Protective effect of stilbenes containing extract-fraction from Cajanus cajan L. on Ab25-35-induced cognitive deficits in mice. Neurosci Lett 467:159–163. doi:10.1016/j/neulet2009.10.029

    Article  CAS  PubMed  Google Scholar 

  45. Bansal N, Parle M (2010) Soybean supplementation helps reverse age- and scopolamine-induced memory deficits in mice. J Med Food 13:1293–1300. doi:10.1089/jmf.2010.1132

    Article  CAS  PubMed  Google Scholar 

  46. Elzi D, Song A, Shiio Y (2016). Role of galactose in cellular senescence. Exp Geron 73:1–4. doi:10.1016/j.exger.2015.11.003

    Article  CAS  Google Scholar 

  47. Aydin F, Çoban J, Doğan-Ekici I, Betül-Kalaz E, Doğru-Abbaspğlu S, Uysal M (2016) Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model. Metab Brain Dis 31:337–345. doi:10.1007/s11011-015-9755-0

    Article  CAS  PubMed  Google Scholar 

  48. Rahim NS, Lim SM, Mani V, Majeed ABA, Ramasamy K (2017) Enhanced memory in Wistar rats by virgin coconut oil is associated with increased antioxidative, cholinergic activities and reduced oxidative stress. Pharm Biol 55:825–832. doi:10.1080/13880209.2017.1280688

    Article  CAS  PubMed  Google Scholar 

  49. Haider S, Liaquat L, Shahzad S, Sadir S, Madiha S, Batool Z, Tabassum S, Saleem S, Naqvi F, Perveen T (2015) A high dose of short term symptoms simulating the natural aging process. Life Sci 124:110–119. doi:10.1016/lfs.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  50. Dias CP, De Lima MN, Torres JP, Dormelles A, Garcia VA, Scalco F, Guimãraes M, Constantino L, Budni P, Dal-Pizzol F, Schöder N (2007) Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience 146:1719–1725. doi:10.1016/j.neuroscience2007.03.018

    Article  Google Scholar 

  51. Butterfield DA, Abdul HM, Newman S, Reed T (2006) Redox proteomics in some age-related neurodegenerative disorders or models therof. Neuro Rx 3:344–357. doi:10.1016/j.nurx.2006.05.003

    Article  CAS  Google Scholar 

  52. Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210. doi:10.1016/j.nlm.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  53. Haley GE, Kroenka C, Schwartz D, Kohama SG, Urbanski HF, Raber J (2011) Hippocampal M1 receptor function associated with spatial learning and memory in aged female rhesus macaques. Age 33:309–320. doi:10.1007/S11357-010-91842

    Article  CAS  PubMed  Google Scholar 

  54. Ruan Q, Hu X, Ao H, Ma H, Gao Z, Liu F, Kong D, Bao Z, Yu Z (2014) The neurovascular protective effects of huperizine A on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontol 60:424–439. doi:10.1159/000358235

    Article  CAS  Google Scholar 

  55. Kremin T, Gerber D, Giocomo L, Huang S, Tonegawa S, Hasselmo M (2006) Muscarnic suppression in stratum radiatum of CA1 shows dependence on presynaptic M1 receptors and is not dependent on effects of GABA (B) receptors. Neurobiol Learn Mem 85:153–163. doi:10.1016/j.nlm.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  56. Mok RM, Myers NE, Wallis G, Nobre AC (2016) Behavioral and neural markers of flexible attention over working memory in aging. Cereb Cortex 26:1831–1834. doi:10.1093/cercor/bhw011

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563. doi:10.1016/j.bbr2010.11.058

    Article  CAS  PubMed  Google Scholar 

  58. Soma S, Suematsu N, Shimegi S (2014) Blockade of muscarinic receptors impairs the retrieval of well-trained memory. Front Aging Neurosci 6:63. doi:10.3389/fnagi2014.00063

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chandler D, Waterhouse BD (2012) Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front Behav Sci 20:1–9. doi:10.3389/fnbeh.2012.00020

    Google Scholar 

  60. Tayebati S, Amenta F, EI-Assouad D, Zacceo D (2002) Muscarinic cholinergic receptor subtypes in the hippocampus of aged rats. Mech Ageing Dev 123:521–528

    Article  CAS  PubMed  Google Scholar 

  61. Pedigo NW Jr, Minor LD, Krumrei TN (1984) Cholinergic drug effects and brain muscarinic receptor binding in aged rats. Neurobiol Aging 5:227–233. doi:10.1016/0197-4580(84)90067-8

    Article  CAS  PubMed  Google Scholar 

  62. Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics and cognition. Prog Neurobiol 69:143–179. doi:10.1016/S0301-0082(02)00126-0

    Article  CAS  PubMed  Google Scholar 

  63. Fernandez de Seville D, Nunez A, Borde M, Malinow R, Buno W(2008) Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. J Neurosci 28:1469–1478. doi:10.1523/JNEUROSCI.2723-07.2008

    Article  Google Scholar 

  64. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 75:2971–2981. doi:10.1016/j.lfs.2004.05.034

    Article  CAS  PubMed  Google Scholar 

  65. Fisher A, Michaelson DM, Brandeis R, Haring R, Chapman S, Pittel Z (2000) M1 muscarinic agonists as potential disease-modifying agents in Alzheimer’s disease. Rationale and perspectives. Ann NY Acad Sci 920:315–320. doi:10.1111/j.1749-6632.2000.tb06941.x

    Article  CAS  PubMed  Google Scholar 

  66. Ohno M, Yamamoto T, Watanabe S (1994) Blockade of hippocampal M1 muscarinic receptors impairs working memory performance of rats. Brain Res 650:260–266. doi:10.1016/0006-8993(94)/91790-6

    Article  CAS  PubMed  Google Scholar 

  67. Greene SJ, Felder CC, Hamilton EE, Nathanson NM, Gannon KS(2001) Analyses of spatial learning and activity in muscarinic M1 receptor knockout mice: evidence for a cognitive deficit. SFN Abstracts. 27

  68. Van Der Z, Lutten PGM (1999) Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdale: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 58:409–471. doi:10.1016/S0301-0082(98)00092-6

    Article  Google Scholar 

  69. van Praag H, Lucero MJ, Yeo GW, Stecker K, Helvand N, Zhao C, Yip E, Afanador M, Schroeter H, Hammerstone J, Gage FH (2007) Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. JNeurosci 18:8047–8055. doi:10.1523/J.NEUROSCI.0914-07.2007

    Google Scholar 

  70. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317. doi:10.1016/j.conb.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  71. Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci 30:79–97. doi: 10.1146/annurev.neuro.30.051606.094222

    Article  CAS  PubMed  Google Scholar 

  72. Pruunsild P, Sepp M, Orav E, Koppel L, Timmisk T (2011) Identification of cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene. J Neurosci 31:3295–3308. doi:10.1523/J.NEUROSCI.4540.10.2011

    Article  CAS  PubMed  Google Scholar 

  73. De Nicoló S, Tarani L, Ceccanti M, Maldini M, Natella F, Vania A, Chaldakov GN, Fiore M (2013) Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition 29:681–687. doi:10.1016/j.nut.2012.11.07

    Article  PubMed  Google Scholar 

  74. Han YS, Bastianetto S, Dumont Y, Quirion R (2006) Specific plasma membrane binding sites for polyphenols, including resveratrol, in the rat brain. J Pharmacol Exp Ther 318:238–245. doi:10.1124/jpet.106.102319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Indian Council of Medical Research (Referral Nos. 54/9/CFP/GER/2011/NCD-II, dt.30.04.2012) to Dr. S. Asha Devi. The financial assistance under the Promotion of University Research and Scientific Excellence (PURSE)-Department of Science and Technology (DST), New Delhi (SR/59/Z-23/2010/38) (dt.27.06.2011); University Grants Commission-Centre for Potential Excellence in a Particular Field (UGC-CPEPA), New Delhi (F.No. 8-2/2008(NA/PE) dt.21.12.2011) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambe Asha Devi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 500 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhijit, S., Subramanyam, M.V.V. & Devi, S.A. Grape Seed Proanthocyanidin and Swimming Exercise Protects Against Cognitive Decline: A Study on M1 Acetylcholine Receptors in Aging Male Rat Brain. Neurochem Res 42, 3573–3586 (2017). https://doi.org/10.1007/s11064-017-2406-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2406-6

Keywords

Navigation