Skip to main content
Erschienen in: Neuropsychology Review 4/2009

01.12.2009 | Review

Aging and Spatial Navigation: What Do We Know and Where Do We Go?

verfasst von: Scott D. Moffat

Erschienen in: Neuropsychology Review | Ausgabe 4/2009

Einloggen, um Zugang zu erhalten

Abstract

Spatial navigation is a complex cognitive skill that is necessary for everyday functioning in the environment. However, navigational skills are not typically measured in most test batteries assessing cognitive aging. The present paper reviews what we know about behavioral differences between older and younger adults in navigational skill and reviews the putative neural mechanisms that may underlie these behavioral differences. Empirical studies to date clearly identify navigation as an aspect of cognitive function that is vulnerable to the aging process. The few functional and structural neuroimaging studies that speak to neurological correlates of these age-related differences point to the hippocampus, parahippocampal gyrus, posterior cingulate gyrus (retrosplenial cortex), parietal lobes and pre-frontal cortex as structures critically involved in age effects on navigation. Outstanding issues in the field are addressed and productive avenues of future research are suggested. Among these outstanding issues include the necessity of performing longitudinal studies and differentiating between hippocampal and extra-hippocampal contributions to aging in navigation. The field may also be advanced by empirical assessment of navigational strategies and investigations into the multisensory nature of navigation including assessing the relative contributions of visual, vestibular, and proprioceptive function to age differences in navigational skill.
Literatur
Zurück zum Zitat Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6(6), 823–829.CrossRefPubMed Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6(6), 823–829.CrossRefPubMed
Zurück zum Zitat Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.CrossRefPubMed Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.CrossRefPubMed
Zurück zum Zitat Allen, G. L., Kirasic, K. C., Rashotte, M. A., & Haun, D. B. (2004). Aging and path integration skill: kinesthetic and vestibular contributions to wayfinding. Perception & Psychophysics, 66(1), 170–179. Allen, G. L., Kirasic, K. C., Rashotte, M. A., & Haun, D. B. (2004). Aging and path integration skill: kinesthetic and vestibular contributions to wayfinding. Perception & Psychophysics, 66(1), 170–179.
Zurück zum Zitat Antonova, E., Parslow, D., Brammer, M., Dawson, G. R., Jackson, S. H., & Morris, R. G. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125–143.CrossRefPubMed Antonova, E., Parslow, D., Brammer, M., Dawson, G. R., Jackson, S. H., & Morris, R. G. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125–143.CrossRefPubMed
Zurück zum Zitat Arthur, E. J., Hancock, P. A., & Chrysler, S. T. (1997). The perception of spatial layout in real and virtual worlds. Ergonomics, 40, 69–77.CrossRefPubMed Arthur, E. J., Hancock, P. A., & Chrysler, S. T. (1997). The perception of spatial layout in real and virtual worlds. Ergonomics, 40, 69–77.CrossRefPubMed
Zurück zum Zitat Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behavioural Brain Research, 93(1–2), 185–190.CrossRefPubMed Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behavioural Brain Research, 93(1–2), 185–190.CrossRefPubMed
Zurück zum Zitat Barnes, C. A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology, 93(1), 74–104.CrossRefPubMed Barnes, C. A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology, 93(1), 74–104.CrossRefPubMed
Zurück zum Zitat Barnes, C. A., Nadel, L., & Honig, W. K. (1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychology, 34(1), 29–39.PubMed Barnes, C. A., Nadel, L., & Honig, W. K. (1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychology, 34(1), 29–39.PubMed
Zurück zum Zitat Barnes, C. A., McNaughton, B. L., & O’Keefe, J. (1983). Loss of place specificity in hippocampal complex spike cells of senescent rat. Neurobiology of Aging, 4(2), 113–119.CrossRefPubMed Barnes, C. A., McNaughton, B. L., & O’Keefe, J. (1983). Loss of place specificity in hippocampal complex spike cells of senescent rat. Neurobiology of Aging, 4(2), 113–119.CrossRefPubMed
Zurück zum Zitat Barnes, C. A., Suster, M. S., Shen, J., & McNaughton, B. L. (1997). Multistability of cognitive maps in the hippocampus of old rats. Nature, 388(6639), 272–275.CrossRefPubMed Barnes, C. A., Suster, M. S., Shen, J., & McNaughton, B. L. (1997). Multistability of cognitive maps in the hippocampus of old rats. Nature, 388(6639), 272–275.CrossRefPubMed
Zurück zum Zitat Barrash, J. (1998). A historical review of topographical disorientation and its neuroanatomical correlates. Journal of Clinical and Experimental Neuropsychology, 20(6), 807–827.CrossRefPubMed Barrash, J. (1998). A historical review of topographical disorientation and its neuroanatomical correlates. Journal of Clinical and Experimental Neuropsychology, 20(6), 807–827.CrossRefPubMed
Zurück zum Zitat Begega, A., Cienfuegos, S., Rubio, S., Santin, J. L., Miranda, R., & Arias, J. L. (2001). Effects of ageing on allocentric and egocentric spatial strategies in the Wistar rat. Behav Processes, 53(1–2), 75–85.CrossRefPubMed Begega, A., Cienfuegos, S., Rubio, S., Santin, J. L., Miranda, R., & Arias, J. L. (2001). Effects of ageing on allocentric and egocentric spatial strategies in the Wistar rat. Behav Processes, 53(1–2), 75–85.CrossRefPubMed
Zurück zum Zitat Berthoz, A., & Viaud-Delmon, I. (1999). Multisensory integration in spatial orientation. Current Opinion in Neurobiology, 9(6), 708–712.CrossRefPubMed Berthoz, A., & Viaud-Delmon, I. (1999). Multisensory integration in spatial orientation. Current Opinion in Neurobiology, 9(6), 708–712.CrossRefPubMed
Zurück zum Zitat Burns, P. C. (1999). Navigation and mobility of older drivers. Journal of Gerontology: Social Sciences, 54B, S49–S55. Burns, P. C. (1999). Navigation and mobility of older drivers. Journal of Gerontology: Social Sciences, 54B, S49–S55.
Zurück zum Zitat Cushman, L. A., Stein, K., & Duffy, C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71(12), 888–895.CrossRefPubMed Cushman, L. A., Stein, K., & Duffy, C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71(12), 888–895.CrossRefPubMed
Zurück zum Zitat de Bruin, J. P., Swinkels, W. A., & de Brabander, J. M. (1997). Response learning of rats in a Morris water maze: involvement of the medical prefrontal cortex. Behavioural Brain Research, 85(1), 47–55.CrossRefPubMed de Bruin, J. P., Swinkels, W. A., & de Brabander, J. M. (1997). Response learning of rats in a Morris water maze: involvement of the medical prefrontal cortex. Behavioural Brain Research, 85(1), 47–55.CrossRefPubMed
Zurück zum Zitat de Bruin, J. P., Moita, M. P., de Brabander, H. M., & Joosten, R. N. (2001). Place and response learning of rats in a Morris water maze: differential effects of fimbria fornix and medial prefrontal cortex lesions. Neurobiology of Learning and Memory, 75(2), 164–178.CrossRefPubMed de Bruin, J. P., Moita, M. P., de Brabander, H. M., & Joosten, R. N. (2001). Place and response learning of rats in a Morris water maze: differential effects of fimbria fornix and medial prefrontal cortex lesions. Neurobiology of Learning and Memory, 75(2), 164–178.CrossRefPubMed
Zurück zum Zitat de Leon, M. J., Convit, A., Wolf, O. T., Tarshish, C. Y., DeSanti, S., Rusinek, H., et al. (2001). Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10966–10971.CrossRefPubMed de Leon, M. J., Convit, A., Wolf, O. T., Tarshish, C. Y., DeSanti, S., Rusinek, H., et al. (2001). Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10966–10971.CrossRefPubMed
Zurück zum Zitat Deshmukh, A., Rodrigue, K. M., Kennedy, K. M., Land, S., Jacobs, B. S., & Raz, N. (2009). Synergistic effects of the MTHFR C677T polymorphism and hypertension on spatial navigation. Biological Psychology, 80(2), 240–245.CrossRefPubMed Deshmukh, A., Rodrigue, K. M., Kennedy, K. M., Land, S., Jacobs, B. S., & Raz, N. (2009). Synergistic effects of the MTHFR C677T polymorphism and hypertension on spatial navigation. Biological Psychology, 80(2), 240–245.CrossRefPubMed
Zurück zum Zitat Driscoll, I., Hamilton, D. A., Petropoulos, H., Yeo, R. A., Brooks, W. M., Baumgartner, R. N., et al. (2003). The aging hippocampus: cognitive, biochemical and structural findings. Cerebral Cortex, 13(12), 1344–1351.CrossRefPubMed Driscoll, I., Hamilton, D. A., Petropoulos, H., Yeo, R. A., Brooks, W. M., Baumgartner, R. N., et al. (2003). The aging hippocampus: cognitive, biochemical and structural findings. Cerebral Cortex, 13(12), 1344–1351.CrossRefPubMed
Zurück zum Zitat Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J. (2005). Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Hormones and Behavior, 47(3), 326–335.CrossRefPubMed Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J. (2005). Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Hormones and Behavior, 47(3), 326–335.CrossRefPubMed
Zurück zum Zitat Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184–188.CrossRefPubMed Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184–188.CrossRefPubMed
Zurück zum Zitat Foreman, N., Stirk, J., Pohl, J., Mandelkow, L., Lehnung, M., Herzog, A., et al. (2000). Spatial information transfer from virtual to real versions of the Kiel locomotor maze. Behavioural Brain Research, 112(1–2), 53–61.CrossRefPubMed Foreman, N., Stirk, J., Pohl, J., Mandelkow, L., Lehnung, M., Herzog, A., et al. (2000). Spatial information transfer from virtual to real versions of the Kiel locomotor maze. Behavioural Brain Research, 112(1–2), 53–61.CrossRefPubMed
Zurück zum Zitat Gallagher, M., & Pelleymounter, M. A. (1988). Spatial learning deficits in old rats: a model for memory decline in the aged. Neurobiology of Aging, 9(5–6), 549–556.CrossRefPubMed Gallagher, M., & Pelleymounter, M. A. (1988). Spatial learning deficits in old rats: a model for memory decline in the aged. Neurobiology of Aging, 9(5–6), 549–556.CrossRefPubMed
Zurück zum Zitat Gron, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404–408.CrossRefPubMed Gron, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404–408.CrossRefPubMed
Zurück zum Zitat Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877–888.CrossRefPubMed Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877–888.CrossRefPubMed
Zurück zum Zitat Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. Journal of Neuroscience, 23(13), 5945–5952.PubMed Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. Journal of Neuroscience, 23(13), 5945–5952.PubMed
Zurück zum Zitat Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. (2009). Age differences in the formation and use of cognitive maps. Behavioural Brain Research, 196(2), 187–191.CrossRefPubMed Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. (2009). Age differences in the formation and use of cognitive maps. Behavioural Brain Research, 196(2), 187–191.CrossRefPubMed
Zurück zum Zitat Ingram, D. K. (1988). Complex maze learning in rodents as a model of age-related memory impairment. Neurobiology of Aging, 9(5–6), 475–485.CrossRefPubMed Ingram, D. K. (1988). Complex maze learning in rodents as a model of age-related memory impairment. Neurobiology of Aging, 9(5–6), 475–485.CrossRefPubMed
Zurück zum Zitat Isingrini, M., Perrotin, A., & Souchay, C. (2008). Aging, metamemory regulation and executive functioning. Progress in Brain Research, 169, 377–392.CrossRefPubMed Isingrini, M., Perrotin, A., & Souchay, C. (2008). Aging, metamemory regulation and executive functioning. Progress in Brain Research, 169, 377–392.CrossRefPubMed
Zurück zum Zitat Jack, C. R., Jr., Petersen, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., Tangalos, E. G., et al. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49(3), 786–794.PubMed Jack, C. R., Jr., Petersen, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., Tangalos, E. G., et al. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49(3), 786–794.PubMed
Zurück zum Zitat Jack, C. R., Jr., Petersen, R. C., Xu, Y., O’Brien, P. C., Smith, G. E., Ivnik, R. J., et al. (1998). Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology, 51(4), 993–999.PubMed Jack, C. R., Jr., Petersen, R. C., Xu, Y., O’Brien, P. C., Smith, G. E., Ivnik, R. J., et al. (1998). Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology, 51(4), 993–999.PubMed
Zurück zum Zitat Kalova, E., Vlcek, K., Jarolimova, E., & Bures, J. (2005). Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behavioural Brain Research, 159(2), 175–186.CrossRefPubMed Kalova, E., Vlcek, K., Jarolimova, E., & Bures, J. (2005). Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behavioural Brain Research, 159(2), 175–186.CrossRefPubMed
Zurück zum Zitat Katayama, K., Takahashi, N., Ogawara, K., & Hattori, T. (1999). Pure topographical disorientation due to right posterior cingulate lesion. Cortex, 35(2), 279–282.CrossRefPubMed Katayama, K., Takahashi, N., Ogawara, K., & Hattori, T. (1999). Pure topographical disorientation due to right posterior cingulate lesion. Cortex, 35(2), 279–282.CrossRefPubMed
Zurück zum Zitat Kirasic, K. C. (1991). Spatial cognition and behavior in young and elderly adults: implications for learning new environments. Psychology and Aging, 6(1), 10–18.CrossRefPubMed Kirasic, K. C. (1991). Spatial cognition and behavior in young and elderly adults: implications for learning new environments. Psychology and Aging, 6(1), 10–18.CrossRefPubMed
Zurück zum Zitat Klein, D. A., Steinberg, M., Galik, E., Steele, C., Sheppard, J. M., Warren, A., et al. (1999). Wandering behaviour in community-residing persons with dementia. International Journal of Geriatric Psychiatry, 14(4), 272–279.CrossRefPubMed Klein, D. A., Steinberg, M., Galik, E., Steele, C., Sheppard, J. M., Warren, A., et al. (1999). Wandering behaviour in community-residing persons with dementia. International Journal of Geriatric Psychiatry, 14(4), 272–279.CrossRefPubMed
Zurück zum Zitat Lovden, M., Schellenbach, M., Grossman-Hutter, B., Kruger, A., & Lindenberger, U. (2005). Environmental topography and postural control demands shape aging-associated decrements in spatial navigation performance. Psychology and Aging, 20(4), 683–694.CrossRefPubMed Lovden, M., Schellenbach, M., Grossman-Hutter, B., Kruger, A., & Lindenberger, U. (2005). Environmental topography and postural control demands shape aging-associated decrements in spatial navigation performance. Psychology and Aging, 20(4), 683–694.CrossRefPubMed
Zurück zum Zitat Lukoyanov, N. V., Andrade, J. P., Dulce Madeira, M., & Paula-Barbosa, M. M. (1999). Effects of age and sex on the water maze performance and hippocampal cholinergic fibers in rats. Neuroscience Letters, 269(3), 141–144.CrossRefPubMed Lukoyanov, N. V., Andrade, J. P., Dulce Madeira, M., & Paula-Barbosa, M. M. (1999). Effects of age and sex on the water maze performance and hippocampal cholinergic fibers in rats. Neuroscience Letters, 269(3), 141–144.CrossRefPubMed
Zurück zum Zitat Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there: a human navigation network. Science, 280(5365), 921–924.CrossRefPubMed Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there: a human navigation network. Science, 280(5365), 921–924.CrossRefPubMed
Zurück zum Zitat Mahmood, O., Adamo, D., Briceno, E., & Moffat, S. D. (2009). Age differences in visual path integration. Behav Brain Res, 205(1), 88–95. Mahmood, O., Adamo, D., Briceno, E., & Moffat, S. D. (2009). Age differences in visual path integration. Behav Brain Res, 205(1), 88–95.
Zurück zum Zitat Mapstone, M., Dickerson, K., & Duffy, C. J. (2008). Distinct mechanisms of impairment in cognitive ageing and Alzheimer’s disease. Brain, 131(Pt 6), 1618–1629.CrossRefPubMed Mapstone, M., Dickerson, K., & Duffy, C. J. (2008). Distinct mechanisms of impairment in cognitive ageing and Alzheimer’s disease. Brain, 131(Pt 6), 1618–1629.CrossRefPubMed
Zurück zum Zitat McLay, R. N., Freeman, S. M., Harlan, R. E., Kastin, A. J., & Zadina, J. E. (1999). Tests used to assess the cognitive abilities of aged rats: their relation to each other and to hippocampal morphology and neurotrophin expression. Gerontology, 45(3), 143–155.CrossRefPubMed McLay, R. N., Freeman, S. M., Harlan, R. E., Kastin, A. J., & Zadina, J. E. (1999). Tests used to assess the cognitive abilities of aged rats: their relation to each other and to hippocampal morphology and neurotrophin expression. Gerontology, 45(3), 143–155.CrossRefPubMed
Zurück zum Zitat Meulenbroek, O., Petersson, K. M., Voermans, N., Weber, B., & Fernandez, G. (2004). Age differences in neural correlates of route encoding and route recognition. NeuroImage, 22(4), 1503–1514.CrossRefPubMed Meulenbroek, O., Petersson, K. M., Voermans, N., Weber, B., & Fernandez, G. (2004). Age differences in neural correlates of route encoding and route recognition. NeuroImage, 22(4), 1503–1514.CrossRefPubMed
Zurück zum Zitat Minoshima, S., Foster, N. L., & Kuhl, D. E. (1994). Posterior cingulate cortex in Alzheimer’s disease. Lancet, 344(8926), 895.CrossRefPubMed Minoshima, S., Foster, N. L., & Kuhl, D. E. (1994). Posterior cingulate cortex in Alzheimer’s disease. Lancet, 344(8926), 895.CrossRefPubMed
Zurück zum Zitat Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116(5), 851–859.CrossRefPubMed Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116(5), 851–859.CrossRefPubMed
Zurück zum Zitat Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a virtual maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73–87.CrossRef Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a virtual maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73–87.CrossRef
Zurück zum Zitat Moffat, S. D., Zonderman, A. B., & Resnick, S. M. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22(5), 787–796.CrossRefPubMed Moffat, S. D., Zonderman, A. B., & Resnick, S. M. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22(5), 787–796.CrossRefPubMed
Zurück zum Zitat Moffat, S. D., Elkins, W., & Resnick, S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27(7), 965–972.CrossRefPubMed Moffat, S. D., Elkins, W., & Resnick, S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27(7), 965–972.CrossRefPubMed
Zurück zum Zitat Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282.CrossRefPubMed Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282.CrossRefPubMed
Zurück zum Zitat Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.CrossRefPubMed Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.CrossRefPubMed
Zurück zum Zitat Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89.CrossRefPubMed Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89.CrossRefPubMed
Zurück zum Zitat Newman, M., & Kaszniak, A. (2000). Spatial memory and aging: performance on a human analog of the Morris water maze. Aging, Neuropsychology, and Cognition, 7(2), 86–93.CrossRef Newman, M., & Kaszniak, A. (2000). Spatial memory and aging: performance on a human analog of the Morris water maze. Aging, Neuropsychology, and Cognition, 7(2), 86–93.CrossRef
Zurück zum Zitat O’Brien, H. L., Tetewsky, S. J., Avery, L. M., Cushman, L. A.,Makous, W., & Duffy, C. J. (2001). Visual mechanisms of spatial disorientation in Alzheimer’s disease. Cereb Cortex, 11(11), 1083–1092.CrossRefPubMed O’Brien, H. L., Tetewsky, S. J., Avery, L. M., Cushman, L. A.,Makous, W., & Duffy, C. J. (2001). Visual mechanisms of spatial disorientation in Alzheimer’s disease. Cereb Cortex, 11(11), 1083–1092.CrossRefPubMed
Zurück zum Zitat O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.
Zurück zum Zitat Ohmi, M. (1996). Egocentric perception through interaction among many sensory systems. Brain Research. Cognitive Brain Research, 5(1–2), 87–96.CrossRefPubMed Ohmi, M. (1996). Egocentric perception through interaction among many sensory systems. Brain Research. Cognitive Brain Research, 5(1–2), 87–96.CrossRefPubMed
Zurück zum Zitat Osterrieth, P. A. (1944). Le test de copie d’une figure complexe: contribution a l’eacutetude de la perception et de la memoire. Archives de Psychologie, 30, 206–256. Osterrieth, P. A. (1944). Le test de copie d’une figure complexe: contribution a l’eacutetude de la perception et de la memoire. Archives de Psychologie, 30, 206–256.
Zurück zum Zitat Park, D. C. (2000). Basic mechanisms accounting for age-related decline in cognitive functions. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A primer. Philadelphia: Psychology. Park, D. C. (2000). Basic mechanisms accounting for age-related decline in cognitive functions. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A primer. Philadelphia: Psychology.
Zurück zum Zitat Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition—II (pp. 1–90). Mahwah: Erlbaum. Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition—II (pp. 1–90). Mahwah: Erlbaum.
Zurück zum Zitat Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. AJNR. American Journal of Neuroradiology, 24(9), 1849–1856.PubMed Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. AJNR. American Journal of Neuroradiology, 24(9), 1849–1856.PubMed
Zurück zum Zitat Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M., & Acker, J. D. (2004). Differential aging of the medial temporal lobe: a study of a five-year change. Neurology, 62, 433–438.PubMed Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M., & Acker, J. D. (2004). Differential aging of the medial temporal lobe: a study of a five-year change. Neurology, 62, 433–438.PubMed
Zurück zum Zitat Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., & Frost, J. (2001). Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3334–3339.CrossRefPubMed Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., & Frost, J. (2001). Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3334–3339.CrossRefPubMed
Zurück zum Zitat Rosenzweig, E. S., Redish, A. D., McNaughton, B. L., & Barnes, C. A. (2003). Hippocampal map realignment and spatial learning. Nature Neuroscience, 6(6), 609–615.CrossRefPubMed Rosenzweig, E. S., Redish, A. D., McNaughton, B. L., & Barnes, C. A. (2003). Hippocampal map realignment and spatial learning. Nature Neuroscience, 6(6), 609–615.CrossRefPubMed
Zurück zum Zitat Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in desk-top virtual environments: experimental investigations using extended navigational experience. Journal of Experimental Psychology, 3, 143–159. Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in desk-top virtual environments: experimental investigations using extended navigational experience. Journal of Experimental Psychology, 3, 143–159.
Zurück zum Zitat Save, E., & Poucet, B. (2000). Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behavioural Brain Research, 109(2), 195–206.CrossRefPubMed Save, E., & Poucet, B. (2000). Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behavioural Brain Research, 109(2), 195–206.CrossRefPubMed
Zurück zum Zitat Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E., & Weaver, K. L. (1997). The effect of aging on experience-dependent plasticity of hippocampal place cells. Journal of Neuroscience, 17(17), 6769–6782.PubMed Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E., & Weaver, K. L. (1997). The effect of aging on experience-dependent plasticity of hippocampal place cells. Journal of Neuroscience, 17(17), 6769–6782.PubMed
Zurück zum Zitat Silverman, D. H. (2004). Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. Journal of Nuclear Medicine, 45(4), 594–607.PubMed Silverman, D. H. (2004). Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. Journal of Nuclear Medicine, 45(4), 594–607.PubMed
Zurück zum Zitat Sjolinder, M., Hook, K., Nilsson, L. G., & Andersson, G. (2005). Age differences and the acquisition of spatial knowledge in a three-dimensional environment: Evaluating the use of an overview map as a navigation aid International. Journal of Human Computer Studies, 63, 537–564.CrossRef Sjolinder, M., Hook, K., Nilsson, L. G., & Andersson, G. (2005). Age differences and the acquisition of spatial knowledge in a three-dimensional environment: Evaluating the use of an overview map as a navigation aid International. Journal of Human Computer Studies, 63, 537–564.CrossRef
Zurück zum Zitat Small, G. W., Ercoli, L. M., Silverman, D. H., Huang, S. C., Komo, S., Bookheimer, S. Y., et al. (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 6037–6042.CrossRefPubMed Small, G. W., Ercoli, L. M., Silverman, D. H., Huang, S. C., Komo, S., Bookheimer, S. Y., et al. (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 6037–6042.CrossRefPubMed
Zurück zum Zitat Sullivan, E. V., Pfefferbaum, A., Swan, G. E., & Carmelli, D. (2001). Heritability of hippocampal size in elderly twin men: equivalent influence from genes and environment. Hippocampus, 11(6), 754–762.CrossRefPubMed Sullivan, E. V., Pfefferbaum, A., Swan, G. E., & Carmelli, D. (2001). Heritability of hippocampal size in elderly twin men: equivalent influence from genes and environment. Hippocampus, 11(6), 754–762.CrossRefPubMed
Zurück zum Zitat Sullivan, E. V., Marsh, L., & Pfefferbaum, A. (2005). Preservation of hippocampal volume throughout adulthood in healthy men and women. Neurobiology of Aging, 26(7), 1093–1098.CrossRefPubMed Sullivan, E. V., Marsh, L., & Pfefferbaum, A. (2005). Preservation of hippocampal volume throughout adulthood in healthy men and women. Neurobiology of Aging, 26(7), 1093–1098.CrossRefPubMed
Zurück zum Zitat Tanila, H., Shapiro, M., Gallagher, M., & Eichenbaum, H. (1997). Brain aging: changes in the nature of information coding by the hippocampus. Journal of Neuroscience, 17(13), 5155–5166.PubMed Tanila, H., Shapiro, M., Gallagher, M., & Eichenbaum, H. (1997). Brain aging: changes in the nature of information coding by the hippocampus. Journal of Neuroscience, 17(13), 5155–5166.PubMed
Zurück zum Zitat Tetewsky, S. J., & Duffy, C. J. (1999). Visual loss and getting lost in Alzheimer’s disease. Neurology, 52(5), 958–965.PubMed Tetewsky, S. J., & Duffy, C. J. (1999). Visual loss and getting lost in Alzheimer’s disease. Neurology, 52(5), 958–965.PubMed
Zurück zum Zitat Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P., et al. (2004). Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron, 43(3), 427–435.CrossRefPubMed Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P., et al. (2004). Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron, 43(3), 427–435.CrossRefPubMed
Zurück zum Zitat West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1995). Differential neuronal loss in the hippocampus in normal aging and in patients with Alzheimer disease. Ugeskrift for Laeger, 157(22), 3190–3193.PubMed West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1995). Differential neuronal loss in the hippocampus in normal aging and in patients with Alzheimer disease. Ugeskrift for Laeger, 157(22), 3190–3193.PubMed
Zurück zum Zitat Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., & Manning, C. A. (1997). Age-related differences in an ecologically based study of route learning. Psychology and Aging, 12(2), 372–375.CrossRefPubMed Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., & Manning, C. A. (1997). Age-related differences in an ecologically based study of route learning. Psychology and Aging, 12(2), 372–375.CrossRefPubMed
Zurück zum Zitat Wilson, I. A., Ikonen, S., McMahan, R. W., Gallagher, M., Eichenbaum, H., & Tanila, H. (2003). Place cell rigidity correlates with impaired spatial learning in aged rats. Neurobiology of Aging, 24(2), 297–305.CrossRefPubMed Wilson, I. A., Ikonen, S., McMahan, R. W., Gallagher, M., Eichenbaum, H., & Tanila, H. (2003). Place cell rigidity correlates with impaired spatial learning in aged rats. Neurobiology of Aging, 24(2), 297–305.CrossRefPubMed
Zurück zum Zitat Witmer, B. G., Bailey, J. H., & Knerr, B. W. (1996). Virtual spaces and real world places: transfer of route knowledge. International Journal of Human Computer Studies, 45, 413–428.CrossRef Witmer, B. G., Bailey, J. H., & Knerr, B. W. (1996). Virtual spaces and real world places: transfer of route knowledge. International Journal of Human Computer Studies, 45, 413–428.CrossRef
Zurück zum Zitat Zakzanis, K. K., Quintin, G., Graham, S. J., & Mraz, R. (2009). Age and dementia related differences in spatial navigation within an immersive virtual environment. Medical Science Monitor, 15(4), CR140–CR150.PubMed Zakzanis, K. K., Quintin, G., Graham, S. J., & Mraz, R. (2009). Age and dementia related differences in spatial navigation within an immersive virtual environment. Medical Science Monitor, 15(4), CR140–CR150.PubMed
Metadaten
Titel
Aging and Spatial Navigation: What Do We Know and Where Do We Go?
verfasst von
Scott D. Moffat
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Neuropsychology Review / Ausgabe 4/2009
Print ISSN: 1040-7308
Elektronische ISSN: 1573-6660
DOI
https://doi.org/10.1007/s11065-009-9120-3

Weitere Artikel der Ausgabe 4/2009

Neuropsychology Review 4/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.