Skip to main content

Advertisement

Log in

Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Initiation of apoptosis, or programmed cell death, is an important issue in cancer treatment as cancer cells frequently have acquired the ability to block apoptosis and thus are more resistant to chemotherapeutic drugs. Targeted and perhaps selective destruction of cancerous tissue is desirable for many reasons, ranging from the enhancement of or aid to current medical methods to problems currently lacking a solution, i.e., lung cancer. Demonstrated in this publication is the inactivation (killing) of human Melanoma skin cancer cell lines, in vitro, by Floating Electrode Dielectric Barrier Discharge (FE-DBD) plasma. Not only are these cells shown to be killed immediately by high doses of plasma treatment, but low doses are shown to promote apoptotic behavior as detected by TUNEL staining and subsequent flow cytometry. It is shown that plasma acts on the cells directly and not by “poisoning” the solution surrounding the cells, even through a layer of such solution. Potential mechanisms of interaction of plasma with cells are discussed and further steps are proposed to develop an understanding of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In medicine, the term “eschar” describes a slough or dry scab that forms on an area of skin that has been burnt or exposed to corrosive agents. The term “eschar” is commonly confused with “char.”

References

  1. Johnstone RW, Ruefli AA, Lowe SW (2002) Cell 108(2):153

    Article  Google Scholar 

  2. Dee Unglaub Silverthorn WCO, Garrison CW, Silverthorn AC, Johnson BR (2004) Human physiology, an integrated approach, 3rd edn. Benjamin-Cummings Publishing Company, pp 912

  3. Poll HU, Schladitz U, Schreiter S (2001) Surf Coat Technol 142–144:489

    Article  Google Scholar 

  4. Vohrer U, Muller H, Oehr C (1998) Surf Coat Technol 98(1–3):1128

    Article  Google Scholar 

  5. Hocker H (2002) Pure Appl Chem 74(3):423

    Google Scholar 

  6. Chen K (1984) Indus Appl, IEEE Trans 20(5):1179

    Google Scholar 

  7. Chen K, Murray WA (1980) Indus Appl, IEEE Trans 16(3):413

    Google Scholar 

  8. Bogaerts A et al (2002) Spectrochim Acta Part B 57(8):609

    Article  Google Scholar 

  9. Kunhardt EE (2000) Plasma Sci, IEEE Trans 28(1):189

    Article  Google Scholar 

  10. Fridman A, Chirokov A, Gutsol A (2005) J Phys D: Appl Phys 38(2):R1

    Article  ADS  Google Scholar 

  11. Raizer Yu P (1991) Gas discharge physics. Springer, Berlin

    Google Scholar 

  12. Alexander A, Fridman LAK (2004) Plasma physics and engineering, 1st edn. Taylor & Francis Group, pp 860

  13. Burtsev VA et al (2000) Plasma Sci, IEEE Trans 28(1):201

    Article  Google Scholar 

  14. Chirokov A et al (2005) Plasma Sci, IEEE Trans 33(2):300

    Article  Google Scholar 

  15. Chu PK et al (2002) Mater Sci Eng R-Reports 36(5–6):143

    Article  Google Scholar 

  16. Fridman G et al (2006) Plasma Chem Plasma Process 26(4):425

    Article  Google Scholar 

  17. Birmingham JG, Hammerstrom DJ (2000) Plasma Sci, IEEE Trans 28(1):51

    Article  Google Scholar 

  18. Cheng C et al (2006) Chin Phys 15(7):1544

    Article  ADS  Google Scholar 

  19. Cvelbar U et al (2006) J Phys D: Appl Phys 39(16):3487

    Article  ADS  Google Scholar 

  20. Farrar LC et al (2000) Plasma Sci, IEEE Trans 28(1):173

    Article  Google Scholar 

  21. Soloshenko IA et al (2000) Plasma Phys Reports 26:792

    Article  ADS  Google Scholar 

  22. Laroussi M, Mendis DA, Rosenberg M (2003) New J Phys 5:41

    Article  Google Scholar 

  23. Moisan M et al (2002) Pure Appl Chem 74(3):349

    Google Scholar 

  24. Efremov NM et al (2000) Plasma Sci, IEEE Trans 28(1):238

    Article  MathSciNet  Google Scholar 

  25. Foster KR (2000) Plasma Sci, IEEE Trans 28(1):15

    Article  Google Scholar 

  26. Girard-Lauriault PL et al (2005) Plasma Process Poly 2(3):263

    Article  Google Scholar 

  27. Kieft IE et al (2004) Bioelectromagnetics 25(5):362

    Article  Google Scholar 

  28. Leveille V, Coulombe S (2005) Plasma Sour Sci Technol 14(3):467(410)

    Google Scholar 

  29. Brown IG et al (2003) Plasma Phys Control Fus 45(5):547

    Article  ADS  Google Scholar 

  30. Coulombe S et al (2006) Pure Appl Chem 78(6):1147

    Article  Google Scholar 

  31. Kieft IE et al (2005) Plasma Sci, IEEE Trans 33(2):771

    Article  Google Scholar 

  32. Strobel M, Lyons CS (1994) J Adhes Sci Technol 8(4):303

    Google Scholar 

  33. Chan CM, Ko TM, Hiraoka H (1996) Surf Sci Rep 24(1–2):3

    Google Scholar 

  34. Holmes S, Schwartz P (1990) Comp Sci Technol 38(1):1

    Article  Google Scholar 

  35. Stoffels E (2006) J Phy D: Appl Phys 39(16)

  36. Watson JP et al (1997) Gut 40:Th156

    Google Scholar 

  37. Vargo JJ (2004) Gastrointest Endosc 59(1):81

    Article  Google Scholar 

  38. Puhlev I. et al (2001) Cryobiology 42(3):207

    Article  Google Scholar 

  39. Colt HG, Crawford SW (2006) Respirology 11(5):643

    Article  Google Scholar 

  40. Raiser J, Zenker M (2006) J Phys D: Appl Phys 39(16):3520

    Article  ADS  Google Scholar 

  41. Anderson KM et al (1999) Med Hypotheses 52(5):451

    Article  Google Scholar 

  42. Eliasson B, Egli W, Kogelschatz U (1994) Pure Appl Chem 66(6):1275

    Google Scholar 

  43. Baydarovtsev YP, Vasilets VN, Ponomarev AN (1985) Russ J Chem Phys 4(N1):89

    Google Scholar 

  44. Yalin AP et al (2002) Plasma Sour Sci Technol 11(3):248

    Article  ADS  Google Scholar 

  45. Stoffels E et al (2002) Plasma Sour Sci Technol 11(4):383

    Article  ADS  Google Scholar 

  46. Stoffels E (2000) High Temp Mater Process 5(2):191

    Google Scholar 

  47. Sosnin EA et al (2004) Plasma Sci, IEEE Trans 32(4):1544

    Article  Google Scholar 

  48. Sosnin EA et al (2004) Techn Phys Lett 30(7):615

    Article  MathSciNet  Google Scholar 

  49. Porter KA et al (1998) Amer J Surg 176(1):8

    Article  ADS  Google Scholar 

  50. Rappaport WD et al (1990) Amer J Surg 160(6):618

    Article  Google Scholar 

  51. Simmons PD, Langlet F, Thin RN (1981) Br J Vener Dis 57(4):273

    Google Scholar 

  52. Ginsberg GG et al (2002) Gastrointest Endosc 55(7):807

    Google Scholar 

  53. Kieft IE, Kurdi M, Stoffels E (2006) Plasma Sci, IEEE Trans 34(4):1331

    Article  Google Scholar 

  54. Weaver JC (2000) Plasma Sci, IEEE Trans 28(1):24

    Article  Google Scholar 

  55. Priglinger SG et al (2005) Arch Ophthalmol 123(10):1412

    Article  Google Scholar 

  56. Miller JM et al (2003) Arch Ophthalmol 121(6):871

    Article  Google Scholar 

  57. Kogelschatz U (2003) Plasma Chem Plasma Process 23(1):1

    Article  Google Scholar 

  58. Silverthorn DU et al (2004) Human physiology, an integrated approach, 3rd edn. Benjamin-Cummings Publishing Company, pp 912

  59. Negoescu A et al (1996) J Histochem Cytochem 44(9):959

    Google Scholar 

  60. Labat-Moleur F et al (1998) J Histochem Cytochem 46(3):327

    Google Scholar 

  61. Sun B, Sato M, Clements JS (1999) J Phys D: Appl Phys 32(15):1908

    Article  ADS  Google Scholar 

  62. Ataullakhanov FI et al (1994) Thromb Res 75(4):383

    Article  Google Scholar 

  63. Zhang R et al (2006) Plasma Sci, IEEE Trans 34(4):1370

    Article  Google Scholar 

  64. Tarasenko O et al (2006) Plasma Sci, IEEE Trans 34(4):1281

    Article  Google Scholar 

  65. Sladek REJ, Baede TA, Stoffels E (2006) Plasma Sci, IEEE Trans 34(4):1325

    Article  Google Scholar 

  66. Sharma A et al (2006) Plasma Sci, IEEE Trans 34(4):1290

    Article  Google Scholar 

  67. Laroussi M et al (2006) Plasma Process Polym, 3(6–7):470

    Article  Google Scholar 

  68. Kuo SP et al (2006) Plasma Sci, IEEE Trans 34(4):1275

    Article  Google Scholar 

  69. Sladek REJ, Stoffels E (2005) J Phys D: Appl Phys 38(11):1716

    Article  ADS  Google Scholar 

  70. Goree J et al (2006) Plasma Sci, IEEE Trans 34(4):1317

    Article  Google Scholar 

  71. Williamson JM et al (2006) J Phys D: Appl Phys 39(20):4400

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) Award #W81XWH-05-2-0068, National Science Foundation (NSF) Grant #ECS-0304453. Assistance from DARPA program managers Drs. Rick Satava and Jay Lowell is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Fridman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fridman, G., Shereshevsky, A., Jost, M.M. et al. Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines. Plasma Chem Plasma Process 27, 163–176 (2007). https://doi.org/10.1007/s11090-007-9048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9048-4

Keywords

Navigation