Skip to main content

Advertisement

Log in

The Origin of Deoxynucleosides in Brain: Implications for the Study of Neurogenesis and Stem Cell Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Abstract

Detection of DNA synthesis in brain employing (3H)thymidine ((3H)dT) or bromo deoxyuridine (BrdU) is widely used as a measure of the “birth” of cells in brain development, adult neurogenesis and neuronal stem cell replacement strategies. However, recent studies have raised serious questions about whether this methodology adequately measures the “birth” of cells in brain either quantitatively or in an interpretable way in comparative studies, or in stem cell investigations. To place these questions in perspective, we review deoxynucleoside synthesis and pharmacokinetics focusing on the barriers interfacing the blood-brain (cerebral capillaries) and blood-cerebrospinal fluid (choroid plexus), and the mechanisms, molecular biology and location of the deoxynucleoside transport systems in the central nervous system. Brain interstitial fluid and CSF nucleoside homeostasis depend upon the activity of concentrative nucleoside transporters (CNT) on the ‘central side’ of the barrier cells and equilibrative nucleoside transporters (ENT) on their ‘plasma side.’ With this information about nucleoside transporters, blood/CSF concentrations and metabolic pathways, we discuss the assumptions and weaknesses of using (3H)dT or BrdU methodologies alone for studying DNA synthesis in brain in the context of neurogenesis and potential stem cell therapy. We conclude that the use of (3H)dT and/or BrdU methodologies can be useful if their limitations are recognized and they are used in conjunction with independent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. G. Kempermann. Adult Neurogenesis. Oxford, New York, 2006.

    Google Scholar 

  2. H. A. Cameron and R. D. G. McKay. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435:406–417 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. T. C. Burns, X. R. Ortiz-González, M. Gutiérrez-Pérez, et al. Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells 24:1121–1127 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. K. I. Park, M. A. Hack, J. Ourednik, et al. Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: evidence from the effect of hypoxia-ischemia in the CNS on clonal “reporter” neural stem cells. Exp. Neurol. 199:156–178 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. P. Rakic. A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering. Cereb. Cortex 16:i3–i17 (2006).

    Article  PubMed  Google Scholar 

  6. K. Sato, J. Kanno, T. Tominaga, Y. Matsubara, and S. Kure. De novo and salvage pathways of DNA synthesis in primary cultured neural stem cells. Brain Res. 1071:24–33 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. J. Eells and R. Spector. Determination of ribonucleosides, deoxyribonucleosides and purine and pyrimidine bases in adult rabbit cerebrospinal fluid and plasma. Neurochem. Res. 8:1307–1320 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. J. Eells and R. Spector. Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma. Neurochem. Res. 8:1451–1457 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. A. Kornberg and T. A. Baker. DNA Replication, 2nd ed. Freeman, New York, 1992.

    Google Scholar 

  10. J. T. Eells and R. Spector. Identification, development and regional distribution of ribonucleotide reductase in adult rat brain. J. Neurochem. 40:1008–1012 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. S. A. Suleiman and R. Spector. Identification, development and regional distribution of thymidylate synthetase in adult rabbit brain. J. Neurochem. 38:392–396 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. L. Wang, A. Saada, and S. Eriksson. Kinetic properties of mutant human thymidine kinase 2 suggest a mechanism for mitochondrial DNA depletion myopathy. J. Biol. Chem. 278:6963–6968 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. V. Dolce, G. Fiermonte, M. J. Runswick, F. Palmieri, and J. E. Walker. The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc. Natl. Acad. Sci. 98:2284–2288 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. G. Pontarin, P. Ferraro, M. L. Valentino, et al. Mitochondrial DNA depletion and thymidine phosphate pool dynamics in a cellular model of mitochondrial neurogastrointestinal encephalomyopathy. J. Biol. Chem. 281:22720–22728 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. A. Spinazzola, R. Marti, I. Nishino, et al. Altered thymidine metabolism due to defects of thymidine phosphorylase. J. Biol. Chem. 277:4128–4133 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. D. J. Begley and M. W. Brightman. Structural and functional aspects of the blood-brain barrier. Prog. Drug Res. 61:39–78 (2003).

    PubMed  CAS  Google Scholar 

  17. C. E. Johanson, J. A. Duncan, E. G. Stopa, and A. Baird. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm. Res. 22:1011–1037 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. C. E. Johanson and D. M. Woodbury. Uptake of [14C]urea by the in vivo choroid plexus-cerebrospinal fluid-brain system: identification of sites of molecular sieving. J. Physiol. 275:167–176 (1978).

    PubMed  CAS  Google Scholar 

  19. D. E. Smith, C. E. Johanson, and R. F. Keep. Peptide and peptide analog transport systems at the blood-CSF barrier. Adv. Drug Deliv. Rev. 56:1765–1791 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. R. Spector and C. E. Johanson. The mammalian choroid plexus. Sci. Am. 261:68–74 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. R. Spector and C. Johanson. Micronutrient and urate transport in choroid plexus and kidney: implications for drug therapy. Pharm. Res. 23:2515–2524 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Z. B. Redzic. Homeostasis of nucleosides and nucleobases in the brain: the role of flux between the CSF and the brain ISF, transport across the choroid plexus and the blood-brain barrier, and cellular uptake. In W. Zheng and A. Chodobski (eds)., The Blood-Cerebrospinal Fluid Barrier, CRC, Boca Raton, 2005, pp. 175–208.

    Google Scholar 

  23. E. M. Cornford and W. H. Oldendorf. Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim. Biophys. Acta 394:211–219 (1975).

    Article  PubMed  CAS  Google Scholar 

  24. R. Spector. Thymidine transport in the central nervous system. J. Neurochem. 35:1092–1098 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. R. Spector and W. G. Berlinger. Localization and mechanism of thymidine transport in the central nervous system. J. Neurochem. 39:837–841 (1982).

    Article  PubMed  CAS  Google Scholar 

  26. R. Spector. Development and localization of the thymidine phosphorylating systems in the brain. J. Neurochem. 36:2019–2024 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. R. Spector. Thymidine accumulation by choroid plexus in vitro. Arch. Biochem. Biophys. 205:85–93 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. R. Spector. Nucleoside transport in choroid plexus: mechanism and specificity. Arch. Biochem. Biophys. 216:693–703 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. R. Spector and S. Huntoon. Specificity and sodium-dependence of the active nucleoside transport system in choroid plexus. J. Neurochem. 42:1048–1052 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. R. Spector and S. Huntoon. Deoxycytidine transport metabolism in the central nervous system. Neurochemistry 40:1474–1480 (1983).

    CAS  Google Scholar 

  31. R. Spector and S. Huntoon. Characterization, development, and localization of the deoxycytidine phosphorylating systems in mammalian brain. J. Neurochem. 40:1481–1486 (1983).

    PubMed  CAS  Google Scholar 

  32. R. Spector and S. Huntoon. Deoxycytidine transport and metabolism in the central nervous system. J. Neurochem. 41:1131–1136 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. S. A. Suleiman and R. Spector. Metabolism of deoxyuridine in rabbit brain. J. Neurochem. 39:824–830 (1982).

    Article  PubMed  CAS  Google Scholar 

  34. J. H. Gray, R. P. Owen, and K. M. Giacomini. The concentrative nucleoside transporter family, SLC28. Eur. J. Physiol. 447:728–734 (2004).

    Article  CAS  Google Scholar 

  35. S. A. Baldwin, P. R. Beal, S. Y. M. Yao, et al. The equilibrative nucleoside transport family SLC29. Eur. J. Physiol. 447:735–743 (2004).

    Article  CAS  Google Scholar 

  36. M. W. L. Ritzel, A. M. L. Ng, S. Y. M. Yao, et al. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J. Biol. Chem. 276:2914–2927 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. D. Wu, J. G. Clement, and W. M. Pardridge. Low blood-brain barrier permeability to azidothymidine (AZT), 3TC™, and thymidine in the rat. Brain Res. 791:313–316 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. S. A. Thomas and M. B. Segal. Saturation kinetics, specificity and NBMPR sensitivity of thymidine entry into the central nervous system. Brain Res. 760:59–67 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. J. Y. Li, R. J. Boado, and W. M. Pardridge. Cloned blood-brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2. J. Cereb. Blood Flow Metab. 21:929–936 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. A. J. Isakovic, M. B. Segal, B. A. Milojkovic, et al. The efflux of purine nucleobases and nucleosides from the rat brain. Neurosci. Lett. 318:65–68 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. Z. B. Redzic, J. Biringer, K. Barnes, et al. Polarized distribution of nucleoside transporters in rat brain endothelial and choroid plexus epithelial cells. J. Neurochem. 94:1420–1426 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. L. Alanko, T. Porkka-Heiskanen, and S. Soinila. Localization of equilibrative nucleoside transporters in the rat brain. J. Chem. Neuroanat. 31:162–168 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. M. E. Schaner, K. M. Gerstin, J. Wang, and K. M. Giacomini. Mechanisms of transport of nucleosides and nucleoside analogues in choroid plexus. Adv. Drug Deliv. Rev. 39:51–62 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. B. Tavazzi, G. Lazzarino, P. Leone, et al. Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin. Biochem. 38:997–1008 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. J. Eells, R. Spector, and S. Huntoon. Nucleoside and oxypurine homeostasis in adult rabbit cerebrospinal fluid and plasma. J. Neurochem. 42:1620–1624 (1984).

    Article  PubMed  CAS  Google Scholar 

  46. R. Stene and R. Spector. Effect of a 400-kilocalorie carbohydrate diet on human plasma uridine and hypoxanthine concentrations. Biochem. Med. Metabol. Biol. 38:44–46 (1987).

    Article  CAS  Google Scholar 

  47. G. Kempermann, H. G. Kuhn, and F. H. Gage. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc. Natl. Acad. Sci. USA 94:10409–10414 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. B. Leuner, E. Gould, and T. J. Shors. Is there a link between adult neurogenesis and learning? Hippocampus 16:216–224 (2006).

    Article  PubMed  Google Scholar 

  49. A. Harman, P. Meyer, and A. Ahmat. Neurogenesis in the hippocampus of an adult marsupial. Brain Behav. Evol. 62:1–12 (2003).

    Article  PubMed  Google Scholar 

  50. N. Kee, S. Sivalingam, R. Boonstra, and J. M. Wojtowics. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J. Neurosci. Methods 115:97–105 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. H. Zhu, Z. Wang, and H. Hansson. Visualization of proliferating cells in the adult mammalian brain with the aid of ribonucleotide reductase. Brain Res. 977:180–189 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. J. R. Selden, F. Dolbeare, J. H. Clair, et al. Statistical confirmation that immunofluorescent detection of DNA repair in human fibroblasts by measurement of bromodeoxyuridine incorporation is stoichiometric and sensitive. Cytometry 14:154–167 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. T. D. Palmer, A. R. Willhoite, and F. H. Gage. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425:479–494 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Michiko Spector for her aid in the preparation of the manuscript and Julie Johanson for assistance with graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad E. Johanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spector, R., Johanson, C.E. The Origin of Deoxynucleosides in Brain: Implications for the Study of Neurogenesis and Stem Cell Therapy. Pharm Res 24, 859–867 (2007). https://doi.org/10.1007/s11095-006-9221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9221-0

Key words

Navigation