Skip to main content
Log in

An Oral Adsorbent, AST-120 Protects Against the Progression of Oxidative Stress by Reducing the Accumulation of Indoxyl Sulfate in the Systemic Circulation in Renal Failure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The effect of AST-120, an oral adsorbent, on oxidative stress in the systemic circulation in chronic renal failure (CRF) was examined and the potential role of indoxyl sulfate (IS), an uremic toxin adsorbed by AST-120, in inducing the formation of reactive oxygen species (ROS) in the vascular system was studied, in vitro and in vivo.

Materials and methods

The level of oxidized albumin, a marker for oxidative stress in the systemic circulation was determined by HPLC, as previously reported. The mRNA levels of TGF-β 1 and Oat1 were measured by quantitative RT-PCR. The IS induced ROS generation in cultured human umbilical vein endothelial cells (HUVECs) was estimated using a fluorescence microplate reader.

Results

An increase in the ratio of oxidized to unoxidized albumin was determined using 5/6 nephrectomized rats (CRF rats) compared to a control group. The ratio was significantly reduced in the group that received AST-120 of 4 weeks, suggesting that AST-120 inhibits oxidative stress in CRF. An anti-oxidative effect of AST-120 was also observed in CRF rats with a similar renal function. The ratio of oxidized albumin was correlated with serum IS levels in vivo. The same relationship was also observed in CRF rats with the continued administration of IS. In addition, IS dramatically increased the generation of ROS in both a dose- and time- dependent manner in HUVEC, suggesting that accumulated IS may play an important role in enhancing intravascular oxidative stress.

Conclusion

We propose that AST-120 reduces IS concentrations in the blood that induces ROS production in endothelial cells, thereby inhibiting the subsequent occurrence of oxidative stress in the systemic circulation in renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRF:

chronic renal failure

CVD:

cardiovascular disease

HPLC:

high-performance liquid chromatography

HSA:

human serum albumin

HUVEC:

human umbilical vein endothelial cell

IS:

indoxyl sulfate

OAT:

organic anion transporter

ROS:

reactive oxygen spiecies

TGF-β 1 :

transforming growth factor-β 1

TIMP-1:

tissue inhibitor of metalloproteinease

References

  1. J. Himmelfarb. Linking oxidative stress and inflammation in kidney disease: which is the chicken and which is the egg? Sem. Dial. 17:449–454 (2004).

    Article  Google Scholar 

  2. U. Singh, and I. Jialal. Oxidative stress and atherosclerosis. Pathophysiology 13:129–142 (2006).

    PubMed  CAS  Google Scholar 

  3. J. Fort. Chronic renal failure: a cardiovascular risk factor. Kidney Inter. Suppl. 99:S25–S29 (2005).

    Article  CAS  Google Scholar 

  4. Y. Yoshida, T. Sakai, and M. Ise. Effects of oral adsorbent in the rat model of chronic renal failure. Nephron 62:305–314 (1992).

    PubMed  CAS  Google Scholar 

  5. I. Aoyama, T. Miyazaki, and T. Niwa. Preventive effects of an oral sorbent on nephropathy in rats. Miner. Electrolyte Metab. 25:365–372 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. A. Owada, M. Nakao, J. Koike, K. Ujiie, K. Tomita, and T. Shiigai. Effects of oral adsorbent AST-120 on the progression of chronic renal failure: a randomized controlled study. Kidney Inter. Suppl. 63:S188–S190 (1997).

    CAS  Google Scholar 

  7. T. Sanaka, N. Sugino, S. Teraoka, and K. Ota. Therapeutic effects of oral sorbent in undialyzed uremia. Am. J. Kidney Dis. 12:97–103 (1988).

    PubMed  CAS  Google Scholar 

  8. T. Miyazaki, I. Aoyama, M. Ise, H. Seo, and T. Niwa. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-beta1 in uraemic rat kidneys. Nephrol. Dial. Transplant. 15:1773–1781 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. I. Aoyama, A. Enomoto, and T. Niwa. Effects of oral adsorbent on gene expression profile in uremic rat kidney: cDNA array analysis. Am. J. Kidney Dis. 41:S8–S14 (2003).

    PubMed  CAS  Google Scholar 

  10. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int. 63:1671–1680 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. T. Niwa, T. Miyazaki, N. Hashimoto, H. Hayashi, M. Ise, Y. Uehara, and K. Maeda. Suppressed serum and urine levels of indoxyl sulfate by oral sorbent in experimental uremic rats. Am. J. Nephrol. 12:201–206 (1992).

    PubMed  CAS  Google Scholar 

  12. M. Motojima, F. Nishijima, M. Ikoma, T. Kawamura, T. Yoshioka, A. B. Fogo, T. Sakai, and I. Ichikawa. Role for “uremic toxin” in the progressive loss of intact nephrons in chronic renal failure. Kidney Int. 40:461–469 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. T. Miyazaki, M. Ise, H. Seo, and T. Niwa. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Inter. Suppl. 62:S15–S22 (1997).

    CAS  Google Scholar 

  14. K. Gelasco, and J. R. Raymond. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am. J. Physiol. Renal Physiol. 290:F1551–F1558 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Ohta, and D. Sahashi. L-tryptophan administration promotes the reversion of pre-established chronic liver injury in rats treated with carbon tetrachloride. J. Nutr. Biochem 13:550 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. M. Anraku, K. Kitamura, A. Shinohara, M. Adachi, A. Suenga, T. Maruyama, K. Miyanaka, T. Miyoshi, N. Shiraishi, H. Nonoguchi, M. Otagiri, and K. Tomita. Intravenous iron administration induces oxidation of serum albumin in hemodialysis patients. Kidney Int. 66:841–848 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. L. Ji, S. Masuda, H. Saito, and K. Inui. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 62:514–524 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. A. Takeuchi, S. Masuda, H. Saito, T. Doi, and K. Inui. Role of kidney-specific organic anion transporters in the urinary excretion of methotrexate. Kidney Int. 60:1058–1068 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. T. Aoshima, Y. Sekido, T. Miyazaki, M. Kajita, S. Mimura, K. Watanabe, K. Shimokata, and T. Niwa. Rapid detection of deletion mutations in inherited metabolic diseases by melting curve analysis with LightCycler. Clin. Chem. 46:119–122 (2000).

    PubMed  CAS  Google Scholar 

  20. T. Hayashi, K. Suda, H. Imai, and S. Era. Simple and sensitive high-performance liquid chromatographic method for the investigation of dynamic changes in the redox state of rat serum albumin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 25:139–146 (2002).

    Article  Google Scholar 

  21. Y. Tsutsumi, T. Deguchi, M. Takano, A. Takadate, W. E. Lindup, and M. Otagiri. Renal disposition of a furan dicarboxylic acid and other uremic toxins in the rat. J. Pharmacol. Exp. Ther. 303:880–887 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. J. Jacobi, B. Kristal, J. Chezar, S. M. Shaul, and S. Sela. Exogenous superoxide mediates pro-oxidative, proinflammatory, and procoagulatory changes in primary endothelial cell cultures. Free Radic. Biol. Med. 39:1238–1248 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. H. Li, and U. Förstermann. Structure-activity relationship of staurosporine analogs in regulating expression of endothelial nitric-oxide synthase gene. Mol. Pharmacol. 57:427–435 (2000).

    PubMed  CAS  Google Scholar 

  24. A. Enomoto, M. Takeda, A. Tojo, T. Sekine, SH. Cha, S. Khamdang, F. Takayama, I. Aoyama, S. Nakamura, H. Endou, and T. Niwa. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J. Am. Soc. Nephrol. 13:1711–1720 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. T. Sakai, K. Yamasaki, T. Sako, U. Kragh-Hansen, A. Suenaga, and M. Otagiri. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm. Res. 18:520–524 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. H. Yamamoto, S. Tsuruoka, T. Ioka, H. Ando, C. Ito, T. Akimoto, A. Fujimura, Y. Asano, and E. Kusano. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. . Kidney Int. 69:1780–1785 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. N. Nakagawa, N. Hasebe, K. Sumitomo, T. Fujino, J. Fukuzawa, T. Hirayama, and K. Kikuchi. An Oral Adsorbent, AST-120, Suppresses Oxidative Stress in Uremic Rats. Am. J. Nephrol. 26:455–461 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br. J. Pharmacol. 135:555–563 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. T. Deguchi, H. Kusuhara, A. Takadate, H. Endou, M. Otagiri, and Y. Sugiyama. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 65:162–174 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. T. Niwa, and M. Ise. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 124:96–104 (1994).

    PubMed  CAS  Google Scholar 

  31. I. Aoyama, and T. Niwa. An oral adsorbent ameliorates renal overload of indoxyl sulfate and progression of renal failure in diabetic rats. Am. J. Kidney Dis. 37:S7–S12 (2001).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the KUREHA CORPORATION (Tokyo, Japan) for the generous gift of AST-120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Otagiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimoishi, K., Anraku, M., Kitamura, K. et al. An Oral Adsorbent, AST-120 Protects Against the Progression of Oxidative Stress by Reducing the Accumulation of Indoxyl Sulfate in the Systemic Circulation in Renal Failure. Pharm Res 24, 1283–1289 (2007). https://doi.org/10.1007/s11095-007-9248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9248-x

Key words

Navigation