Skip to main content
Log in

Conditional Weighted Residuals (CWRES): A Model Diagnostic for the FOCE Method

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Population model analyses have shifted from using the first order (FO) to the first-order with conditional estimation (FOCE) approximation to the true model. However, the weighted residuals (WRES), a common diagnostic tool used to test for model misspecification, are calculated using the FO approximation. Utilizing WRES with the FOCE method may lead to misguided model development/evaluation. We present a new diagnostic tool, the conditional weighted residuals (CWRES), which are calculated based on the FOCE approximation.

Materials and Methods

CWRES are calculated as the FOCE approximated difference between an individual’s data and the model prediction of that data divided by the root of the covariance of the data given the model.

Results

Using real and simulated data the CWRES distributions behave as theoretically expected under the correct model. In contrast, in certain circumstances, the WRES have distributions that greatly deviate from the expected, falsely indicating model misspecification. CWRES/WRES comparisons can also indicate if the FOCE estimation method will improve the results of an FO model fit to data.

Conclusions

Utilization of CWRES could improve model development and evaluation and give a more accurate picture of if and when a model is misspecified when using the FO or FOCE methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Zhang, V. Sinha, S. T. Forgue, S. Callies, L. Ni, R. Peck, and S. R. Allerheiligen. Model-based drug development: the road to quantitative pharmacology. J. Pharmacokinet. Pharmacodyn. 33:369–393 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. L. Aarons, M. O. Karlsson, F. Mentre, F. Rombout, J. L. Steimer, A. van Peer. Role of modelling and simulation in Phase I drug development. Eur. J. Pharm. Sci. 13:115–122 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. J. C. Pinheiro, M. J. Lindstrom. Model building for nonlinear mixed effects models, (1994).

  4. A. T. Galecki, R. D. Wolfinger, O. A. Linares, M. J. Smith, and J. B. Halter. Ordinary differential equation PK/PD models using the SAS macro NLINMIX. J. Biopharm. Stat. 14:483–503 (2004).

    Article  PubMed  Google Scholar 

  5. P. Girard and F. Mentré. A comparison of estimation methods in nonlinear mixed effects models using a blind analysis, PAGE Abstracts of the Annual Meeting of the Population Approach Group in Europe, Vol. 14, Abstr 834 [http://www.page-meeting.org/?abstract=834], Pamplona, Spain, 2005.

  6. S. Beal and L. Sheiner. The NONMEM system. Am. Stat. 34:118–119 (1980).

    Article  Google Scholar 

  7. U. Wahlby, E. N., and Jonsson, M. O. Karlsson. Assessment of actual significance levels for covariate effects in NONMEM. J. Pharmacokinet. Pharmacodyn. 28:231–252 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. E. N. Jonsson, J. R. Wade, and M. O. Karlsson. Comparison of some practical sampling strategies for population pharmacokinetic studies. J. Pharmacokinet. Biopharm. 24:245–263 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. B. P. Booth and J. V. Gobburu. Considerations in analyzing single-trough concentrations using mixed-effects modeling. J. Clin. Pharmacol. 43:1307–1315 (2003).

    Article  PubMed  Google Scholar 

  10. S. Beal and L. Sheiner. NONMEM User’s Guide, University of California, San Francisco, 1992.

    Google Scholar 

  11. Guidance for industry on Population Pharmacokinetics; availability. Food and Drug Administration, HHS. Notice. Fed Regist. 64:6663–6664 (1999).

    Google Scholar 

  12. M. Davidian and D. M. Giltinan. Nonlinear models for repeated measurement data, Chapman & Hall, New York, 1995.

    Google Scholar 

  13. M. L. Lindstrom and D. M. Bates. Nonlinear mixed effects models for repeated measures data. Biometrics. 46:673–687 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. F. Mentre and S. Escolano. Prediction discrepancies for the evaluation of nonlinear mixed-effects models. J. Pharmacokinet. Pharmacodyn. 33:345–367 (2006).

    Article  PubMed  Google Scholar 

  15. E. N. Jonsson and M. O. Karlsson. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput. Methods Programs Biomed. 58:51–64 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. L. Lindbom, P. Philgren, and N. Jonsson. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modelling using NONMEM. Comput. Methods Programs Biomed. 79:241–257 (2005).

    Article  PubMed  Google Scholar 

  17. M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing, Dover, New York, 1972.

    Google Scholar 

  18. J. E. Bennett and J. C. Wakefield. A comparison of a Bayesian population method with two methods as implemented in commercially available software. J. Pharmacokinet. Biopharm. 24:403–432 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. M. O. Karlsson, E. N. Jonsson, C. G. Wiltse, and J. R. Wade. Assumption testing in population pharmacokinetic models: illustrated with an analysis of moxonidine data from congestive heart failure patients. J. Pharmacokinet. Biopharm. 26:207–246 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. R. Savic, D. M. Jonker, T. Kerbusch, and M. O. Karlsson. Evaluation of a transit compartment model versus a lag time model for describing drug absorption delay, PAGE Abstracts of the Annual Meeting of the Population Approach Group in Europe, Vol. 13, Abstr 513 [http://www.page-meeting.org/?abstract=513], Uppsala, Sweden, 2004.

  21. A. Hooker, A. J. T. Tije, M. A. Carducci, H. Gelderblom, F. W. Dawkins, W. P. McGuire, J. Verweij, M. O. Karlsson, and S. D. Baker. Population pharmacokinetic modeling of total and unbound docetaxel plasma concentrations in cancer patients with poor liver function, PAGE Abstracts of the Annual Meeting of the Population Approach Group in Europe, Vol. 14, Abstr 815 [http://www.page-meeting.org/?abstract=815], Pamplona, Spain, 2005.

  22. A. Quartino, M. O. Karlsson, A. Freijs, N. Jonsson, P. Nygren, J. Kristensen, E. Lindhagen, and R. Larsson. Population Based Pharmacodynamics for In Vitro Drug Sensitivity Assays: Prediction of Model Based Parameters of Drug Activity and Relationship to Clinical Outcome, PAGE Abstracts of the Annual Meeting of the Population Approach Group in Europe, Vol. 14, Abstr 809 [http://www.page-meeting.org/?abstract=809], Pamplona, Spain, 2005.

Download references

Acknowledgements

A. Hooker was financed by Pfizer Ltd, Sandwich, UK and C. Staatz would like to acknowledge financial support from a NHMRC Neil Hamilton Fairley Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Hooker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooker, A.C., Staatz, C.E. & Karlsson, M.O. Conditional Weighted Residuals (CWRES): A Model Diagnostic for the FOCE Method. Pharm Res 24, 2187–2197 (2007). https://doi.org/10.1007/s11095-007-9361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9361-x

Key words

Navigation