Skip to main content

Advertisement

Log in

Contribution of Carrier-Mediated Transport Systems to the Blood–Brain Barrier as a Supporting and Protecting Interface for the Brain; Importance for CNS Drug Discovery and Development

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB) forms an interface between the circulating blood and the brain and possesses various carrier-mediated transport systems for small molecules to support and protect CNS function. For example, the blood-to-brain influx transport systems supply nutrients, such as glucose and amino acids. Consequently, xenobiotic drugs recognized by influx transporters are expected to have high permeability across the BBB. On the other hand, efflux transporters, including ATP-binding cassette transporters such as P-glycoprotein located at the luminal membrane of endothelial cells, function as clearance systems for metabolites and neurotoxic compounds produced in the brain. Drugs recognized by these transporters are expected to show low BBB permeability and low distribution to the brain. Despite recent progress, the transport mechanisms at the BBB have not been fully clarified yet, especially in humans. However, an understanding of the human BBB transport system is critical, because species differences mean that it can be difficult to extrapolate data obtained in experimental animals during drug development to humans. Recent progress in methodologies is allowing us to address this issue. Positron emission tomography can be used to evaluate the activity of human BBB transport systems in vivo. Proteomic studies may also provide important insights into human BBB function. Construction of a human BBB transporter atlas would be a most important advance from the viewpoint of CNS drug discovery and drug delivery to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I. Kola, and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug. Discov. 3:711–715 (2004).

    PubMed  CAS  Google Scholar 

  2. W. M. Pardridge. Crossing the blood–brain barrier: are we getting it right? Drug Discov. Today. 6:1–2 (2001).

    PubMed  Google Scholar 

  3. W. M. Pardridge. William Pardridge discusses the lack of BBB research. Interview by Rebecca N. Lawrence. Drug Discov. Today 7:223–226 (2002).

    PubMed  Google Scholar 

  4. R. J. Boado, J. Y. Li, M. Nagaya, C. Zhang, and W. M. Pardridge. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc. Natl. Acad. Sci. U.S.A. 96:12079–12084 (1999).

    PubMed  CAS  Google Scholar 

  5. T. Kageyama, M. Nakamura, A. Matsuo, Y. Yamasaki, Y. Takakura, M. Hashida, Y. Kanai, M. Naito, T. Tsuruo, N. Minato, and S. Shimohama. The 4F2hc/LAT1 complex transports l-DOPA across the blood–brain barrier. Brain Res. 879:115–121 (2000).

    PubMed  CAS  Google Scholar 

  6. P. Gomes, and P. Soares-da-Silva. l-DOPA transport properties in an immortalised cell line of rat capillary cerebral endothelial cells, RBE 4. Brain Res. 829:143–150 (1999).

    PubMed  CAS  Google Scholar 

  7. N. J. Abbott, and I. A. Romero. Transporting therapeutics across the blood–brain barrier. Mol. Med. Today 2:106–113 (1996).

    PubMed  CAS  Google Scholar 

  8. J. H. Pincus, and K. Barry. Protein redistribution diet restores motor function in patients with dopa-resistant “off” periods. Neurology 38:481–483 (1988).

    PubMed  CAS  Google Scholar 

  9. C. L. Farrell, and W. M. Pardridge. Ultrastructural localization of blood–brain barrier-specific antibodies using immunogold-silver enhancement techniques. J. Neurosci. Methods 37:103–110 (1991).

    PubMed  CAS  Google Scholar 

  10. D. B. Agus, S. S. Gambhir, W. M. Pardridge, C. Spielholz, J. Baselga, J. C. Vera, and D. W. Golde. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J. Clin. Invest. 100:2842–2848 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. K. Hosoya, A. Minamizono, K. Katayama, T. Terasaki, and M. Tomi. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Invest. Ophthalmol. Vis. Sci. 45:1232–1239 (2004).

    PubMed  Google Scholar 

  12. R. Polt, F. Porreca, L. Z. Szabo, E. J. Bilsky, P. Davis, T. J. Abbruscato, T. P. Davis, R. Harvath, H. I. Yamamura, and V. J. Hruby. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood–brain barrier. Proc. Natl. Acad. Sci. U.S.A. 91:7114–7118 (1994).

    PubMed  CAS  Google Scholar 

  13. T. Halmos, M. Santarromana, K. Antonakis, and D. Scherman. Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter. Eur. J. Pharmacol. 318:477–484 (1996).

    PubMed  CAS  Google Scholar 

  14. Y. Kido, I. Tamai, M. Okamoto, F. Suzuki, and A. Tsuji. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood–brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm. Res. 17:55–62 (2000).

    PubMed  CAS  Google Scholar 

  15. J. E. Cremer, V. J. Cunningham, W. M. Pardridge, L. D. Braun, and W. H. Oldendorf. Kinetics of blood–brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33:439–445 (1979).

    PubMed  CAS  Google Scholar 

  16. L. Pellerin, G. Pellegri, J. L. Martin, and P. J. Magistretti. Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc. Natl. Acad. Sci. U.S.A. 95:3990–3995 (1998).

    PubMed  CAS  Google Scholar 

  17. Q. R. Smith, and J. Stoll. Blood-brain barrier amino acid transport, Introduction to blood–brain barrier: methodology and pathology. Cambridge University Press, 1998, pp. 188–197.

  18. J. Y. Li, R. J. Boado, and W. M. Pardridge. Cloned blood–brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2. J. Cereb. Blood Flow Metab. 21:929–936 (2001).

    PubMed  CAS  Google Scholar 

  19. B. Gao, B. Hagenbuch, G. A. Kullak-Ublick, D. Benke, A. Aguzzi, and P. J. Meier. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood–brain barrier. J. Pharmacol. Exp. Ther. 294:73–79 (2000).

    PubMed  CAS  Google Scholar 

  20. M. Yamazaki, H. Fukuoka, O. Nagata, H. Kato, Y. Ito, T. Terasaki, and A. Tsuji. Transport mechanism of an H1-antagonist at the blood-brain barrier: transport mechanism of mepyramine using the carotid injection technique. Biol. Pharm. Bull. 17:676–679 (1994).

    PubMed  CAS  Google Scholar 

  21. M. Yamazaki, T. Terasaki, K. Yoshioka, O. Nagata, H. Kato, Y. Ito, and A. Tsuji. Carrier-mediated transport of H1-antagonist at the blood–brain barrier: mepyramine uptake into bovine brain capillary endothelial cells in primary monolayer cultures. Pharm. Res. 11:975–978 (1994).

    PubMed  CAS  Google Scholar 

  22. M. Yamazaki, T. Terasaki, K. Yoshioka, O. Nagata, H. Kato, Y. Ito, and A. Tsuji. Carrier-mediated transport of H1-antagonist at the blood–brain barrier: a common transport system of H1-antagonists and lipophilic basic drugs. Pharm. Res. 11:1516–1518 (1994).

    PubMed  CAS  Google Scholar 

  23. A. Gjedde, and M. Rasmussen. Blood–brain glucose transport in the conscious rat: comparison of the intravenous and intracarotid injection methods. J. Neurochem. 35:1375–1381 (1980).

    PubMed  CAS  Google Scholar 

  24. W. M. Pardridge. Recent advances in blood-brain barrier transport. Annu. Rev. Pharmacol. Toxicol. 28:25–39 (1988).

    PubMed  CAS  Google Scholar 

  25. N. Ishiguro, T. Nozawa, A. Tsujihata, A. Saito, W. Kishimoto, K. Yokoyama, T. Yotsumoto, K. Sakai, T. Igarashi, and I. Tamai. Influx and efflux transport of H1-antagonist epinastine across the blood-brain barrier. Drug. Metab. Dispos. 32:519–524 (2004).

    PubMed  CAS  Google Scholar 

  26. S. Ohtsuki, M. Tachikawa, H. Takanaga, H. Shimizu, M. Watanabe, K. Hosoya, and T. Terasaki. The blood–brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J. Cereb. Blood Flow Metab. 22:1327–1335 (2002).

    PubMed  CAS  Google Scholar 

  27. M. Tachikawa, M. Fukaya, T. Terasaki, S. Ohtsuki, and M. Watanabe. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur. J. Neurosci. 20:144–160 (2004).

    PubMed  Google Scholar 

  28. M. Balestrino, M. Lensman, M. Parodi, L. Perasso, R. Rebaudo, R. Melani, S. Polenov, and A. Cupello. Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids 23:221–229 (2002).

    PubMed  CAS  Google Scholar 

  29. G. J. Brewer, and T. W. Wallimann. Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J. Neurochem. 74:1968–1978 (2000).

    PubMed  CAS  Google Scholar 

  30. P. Dechent, P. J. Pouwels, B. Wilken, F. Hanefeld, and J. Frahm. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. 277:R698–R704 (1999).

    PubMed  CAS  Google Scholar 

  31. B. Marescau, D. R. Deshmukh, M. Kockx, I. Possemiers, I. A. Qureshi, P. Wiechert, and P. P. De Deyn. Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism 41:526–532 (1992).

    PubMed  CAS  Google Scholar 

  32. E. Omerovic, E. Bollano, M. Lorentzon, M. Walser, L. Mattsson-Hulten, and J. Isgaard. Growth hormone induces myocardial expression of creatine transporter and decreases plasma levels of IL-1beta in rats during early postinfarct cardiac remodeling. Growth Horm. IGF Res. 13:239–245 (2003).

    PubMed  CAS  Google Scholar 

  33. M. Shojaiefard, D. L. Christie, and F. Lang. Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem. Biophys. Res. Commun. 334:742–746 (2005).

    PubMed  CAS  Google Scholar 

  34. M. Shojaiefard, D. L. Christie, and F. Lang. Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem. Biophys. Res. Commun. 341:945–949 (2006).

    PubMed  CAS  Google Scholar 

  35. Y. S. Kang, S. Ohtsuki, H. Takanaga, M. Tomi, K. Hosoya, and T. Terasaki. Regulation of taurine transport at the blood–brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. J. Neurochem. 83:1188–1195 (2002).

    PubMed  CAS  Google Scholar 

  36. I. Tamai, M. Senmaru, T. Terasaki, and A. Tsuji. Na(+)- and Cl(-)-dependent transport of taurine at the blood–brain barrier. Biochem. Pharmacol. 50:1783–1793 (1995).

    PubMed  CAS  Google Scholar 

  37. K. Hosoya, M. Tomi, S. Ohtsuki, H. Takanaga, S. Saeki, Y. Kanai, H. Endou, M. Naito, T. Tsuruo, and T. Terasaki. Enhancement of l-cystine transport activity and its relation to xCT gene induction at the blood–brain barrier by diethyl maleate treatment. J. Pharmacol. Exp. Ther. 302:225–231 (2002).

    PubMed  CAS  Google Scholar 

  38. C. Cordon-Cardo, J. P. O’Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. U.S.A. 86:695–698 (1989).

    PubMed  CAS  Google Scholar 

  39. A. Tsuji, T. Terasaki, Y. Takabatake, Y. Tenda, I. Tamai, T. Yamashima, S. Moritani, T. Tsuruo, and J. Yamashita. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life. Sci. 51:1427–1437 (1992).

    PubMed  CAS  Google Scholar 

  40. T. Ooie, T. Terasaki, H. Suzuki, and Y. Sugiyama. Kinetic evidence for active efflux transport across the blood–brain barrier of quinolone antibiotics. J. Pharmacol. Exp. Ther. 283:293–304 (1997).

    PubMed  CAS  Google Scholar 

  41. T. Terasaki, and K. Hosoya. The blood–brain barrier efflux transporters as a detoxifying system for the brain. Adv. Drug Deliv. Rev. 36:195–209 (1999).

    PubMed  CAS  Google Scholar 

  42. A. H. Schinkel, J. J. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502 (1994).

    PubMed  CAS  Google Scholar 

  43. M. Dean, A. Rzhetsky, and R. Allikmets. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11:1156–1166 (2001).

    PubMed  CAS  Google Scholar 

  44. S. Ohtsuki, H. Yamaguchi, T. Asashima, and T. Terasaki. Establishing a method to isolate rat brain capillary endothelial cells by magnetic cell sorting and dominant mRNA expression of multidrug resistance-associated protein 1 and 4 in highly purified rat brain capillary endothelial cells. Pharm. Res. 24(4):688–694 (2007).

    PubMed  CAS  Google Scholar 

  45. H. Gutmann, M. Torok, G. Fricker, J. Huwyler, C. Beglinger, and J. Drewe. Modulation of multidrug resistance protein expression in porcine brain capillary endothelial cells in vitro. Drug Metab. Dispos. 27:937–941 (1999).

    PubMed  CAS  Google Scholar 

  46. A. T. Nies, G. Jedlitschky, J. Konig, C. Herold-Mende, H. H. Steiner, H. P. Schmitt, and D. Keppler. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–360 (2004).

    PubMed  CAS  Google Scholar 

  47. M. Leggas, M. Adachi, G. L. Scheffer, D. Sun, P. Wielinga, G. Du, K. E. Mercer, Y. Zhuang, J. C. Panetta, B. Johnston, R. J. Scheper, C. F. Stewart, and J. D. Schuetz. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol. Cell. Biol. 24:7612–7621 (2004).

    PubMed  CAS  Google Scholar 

  48. Z. S. Chen, K. Lee, and G. D. Kruh. Transport of cyclic nucleotides and estradiol 17-beta-d-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem. 276:33747–33754 (2001).

    PubMed  CAS  Google Scholar 

  49. J. D. Schuetz, M. C. Connelly, D. Sun, S. G. Paibir, P. M. Flynn, R. V. Srinivas, A. Kumar, and A. Fridland. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med. 5:1048–1051 (1999).

    PubMed  CAS  Google Scholar 

  50. S. Mori, S. Ohtsuki, H. Takanaga, T. Kikkawa, Y. S. Kang, and T. Terasaki. Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J. Neurochem. 90:931–941 (2004).

    PubMed  CAS  Google Scholar 

  51. T. Terasaki, and W. M. Pardridge. Restricted transport of 3′-azido-3′-deoxythymidine and dideoxynucleosides through the blood–brain barrier. J. Infect. Dis. 158:630–632 (1988).

    PubMed  CAS  Google Scholar 

  52. H. C. Cooray, C. G. Blackmore, L. Maskell, and M. A. Barrand. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–2063 (2002).

    PubMed  CAS  Google Scholar 

  53. S. Hori, S. Ohtsuki, M. Tachikawa, N. Kimura, T. Kondo, M. Watanabe, E. Nakashima, and T. Terasaki. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J. Neurochem. 90:526–536 (2004).

    PubMed  CAS  Google Scholar 

  54. M. Tachikawa, M. Watanabe, S. Hori, M. Fukaya, S. Ohtsuki, T. Asashima, and T. Terasaki. Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J. Neurochem. 95:294–304 (2005).

    PubMed  CAS  Google Scholar 

  55. K. Hosoya, M. Sugawara, H. Asaba, and T. Terasaki. Blood-brain barrier produces significant efflux of l-aspartic acid but not d-aspartic acid: in vivo evidence using the brain efflux index method. J. Neurochem. 73:1206–1211 (1999).

    PubMed  CAS  Google Scholar 

  56. K. Tetsuka, H. Takanaga, S. Ohtsuki, K. Hosoya, and T. Terasaki. The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood–brain barrier. J. Neurochem. 87:891–901 (2003).

    PubMed  CAS  Google Scholar 

  57. R. L. O’Kane, I. Martinez-Lopez, M. R. DeJoseph, J. R. Vina, and R. A. Hawkins. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J. Biol. Chem. 274:31891–31895 (1999).

    PubMed  CAS  Google Scholar 

  58. M. Palacin, R. Estevez, J. Bertran, and A. Zorzano. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78:969–1054 (1998).

    PubMed  CAS  Google Scholar 

  59. H. Takanaga, S. Ohtsuki, K. Hosoya, and T. Terasaki. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood–brain barrier. J. Cereb. Blood Flow Metab. 21:1232–1239 (2001).

    PubMed  CAS  Google Scholar 

  60. K. Wakayama, S. Ohtsuki, H. Takanaga, K. Hosoya, and T. Terasaki. Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci. Res. 44:173–180 (2002).

    PubMed  CAS  Google Scholar 

  61. O. T. Wolf, and C. Kirschbaum. Actions of dehydroepiandrosterone and its sulfate in the central nervous system: effects on cognition and emotion in animals and humans. Brain Res. Brain Res. Rev. 30:264–288 (1999).

    PubMed  CAS  Google Scholar 

  62. H. Asaba, K. Hosoya, H. Takanaga, S. Ohtsuki, E. Tamura, T. Takizawa, and T. Terasaki. Blood–brain barrier is involved in the efflux transport of a neuroactive steroid, dehydroepiandrosterone sulfate, via organic anion transporting polypeptide 2. J. Neurochem. 75:1907–1916 (2000).

    PubMed  CAS  Google Scholar 

  63. B. Gao, B. Stieger, B. Noe, J. M. Fritschy, and P. J. Meier. Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J. Histochem. Cytochem. 47:1255–1264 (1999).

    PubMed  CAS  Google Scholar 

  64. L. Li, P. J. Meier, and N. Ballatori. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol. Pharmacol. 58:335–340 (2000).

    PubMed  CAS  Google Scholar 

  65. C. Dagenais, J. Ducharme, and G. M. Pollack. Uptake and efflux of the peptidic delta-opioid receptor agonist. Neurosci. Lett. 301:155–158 (2001).

    PubMed  CAS  Google Scholar 

  66. S. Ohtsuki, T. Takizawa, H. Takanaga, S. Hori, K. Hosoya, and T. Terasaki. Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells. J. Neurochem. 90:743–749 (2004).

    PubMed  CAS  Google Scholar 

  67. D. Sugiyama, H. Kusuhara, H. Taniguchi, S. Ishikawa, Y. Nozaki, H. Aburatani, and Y. Sugiyama. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood–brain barrier: high affinity transporter for thyroxine. J. Biol. Chem. 278:43489–43495 (2003).

    PubMed  CAS  Google Scholar 

  68. J. Y. Li, R. J. Boado, and W. M. Pardridge. Blood–brain barrier genomics. J. Cereb. Blood Flow Metab. 21:61–68 (2001).

    PubMed  CAS  Google Scholar 

  69. B. M. Emanuelsson, L. Paalzow, and M. Sunzel. Probenecid-induced accumulation of 5-hydroxyindoleacetic acid and homovanillic acid in rat brain. J. Pharm. Pharmacol. 39:705–710 (1987).

    PubMed  CAS  Google Scholar 

  70. C. S. Kim, C. R. Roe, J. D. Mann, and G. R. Breese. Octanoic acid produces accumulation of monoamine acidic metabolites in the brain: interaction with organic anion transport at the choroid plexus. J. Neurochem. 58:1499–1503 (1992).

    PubMed  CAS  Google Scholar 

  71. S. Mori, H. Takanaga, S. Ohtsuki, T. Deguchi, Y. S. Kang, K. Hosoya, and T. Terasaki. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J. Cereb. Blood Flow Metab. 23:432–440 (2003).

    PubMed  CAS  Google Scholar 

  72. S. Ohtsuki, T. Kikkawa, S. Mori, S. Hori, H. Takanaga, M. Otagiri, and T. Terasaki. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. J. Pharmacol. Exp. Ther. 309:1273–1281 (2004).

    PubMed  CAS  Google Scholar 

  73. S. Ohtsuki, H. Asaba, H. Takanaga, T. Deguchi, K. Hosoya, M. Otagiri, and T. Terasaki. Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J. Neurochem. 83:57–66 (2002).

    PubMed  CAS  Google Scholar 

  74. E. Jacqz-Aigrain, S. Nafa, Y. Medard, E. Bessa, B. Lescoeur, and E. Vilmer. Pharmacokinetics and distribution of 6-mercaptopurine administered intravenously in children with lymphoblastic leukaemia. Eur. J. Clin. Pharmacol. 53:71–74 (1997).

    PubMed  CAS  Google Scholar 

  75. Y. Deguchi, Y. Yokoyama, T. Sakamoto, H. Hayashi, T. Naito, S. Yamada, and R. Kimura. Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood–brain barrier. Life Sci. 66:649–662 (2000).

    PubMed  CAS  Google Scholar 

  76. M. J. Painter, C. Pippenger, C. Wasterlain, M. Barmada, W. Pitlick, G. Carter, and S. Abern. Phenobarbital and phenytoin in neonatal seizures: metabolism and tissue distribution. Neurology 31:1107–1112 (1981).

    PubMed  CAS  Google Scholar 

  77. E. M. Cornford, C. P. Diep, and W. M. Pardridge. Blood–brain barrier transport of valproic acid. J. Neurochem. 44:1541–1550 (1985).

    PubMed  CAS  Google Scholar 

  78. K. D. Adkison, and D. D. Shen. Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J. Pharmacol. Exp. Ther. 276:1189–1200 (1996).

    PubMed  CAS  Google Scholar 

  79. A. Kakee, H. Takanaga, K. Hosoya, Y. Sugiyama, and T. Terasaki. In vivo evidence for brain-to-blood efflux transport of valproic acid across the blood–brain barrier. Microvasc. Res. 63:233–238 (2002).

    PubMed  CAS  Google Scholar 

  80. I. Tamai, H. Takanaga, H. Maeda, Y. Sai, T. Ogihara, H. Higashida, and A. Tsuji. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem. Biophys. Res. Commun. 214:482–489 (1995).

    PubMed  CAS  Google Scholar 

  81. H. Huai-Yun, D. T. Secrest, K. S. Mark, D. Carney, C. Brandquist, W. F. Elmquist, and D. W. Miller. Expression of multidrug resistance-associated protein (MRP) in brain microvessel endothelial cells. Biochem. Biophys. Res. Commun. 243:816–820 (1998).

    PubMed  CAS  Google Scholar 

  82. J. P. Gibbs, M. C. Adeyeye, Z. Yang, and D. D. Shen. Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport. Epilepsy Res. 58:53–66 (2004).

    PubMed  CAS  Google Scholar 

  83. M. Katoh, N. Suzuyama, T. Takeuchi, S. Yoshitomi, S. Asahi, and T. Yokoi. Kinetic analyses for species differences in P-glycoprotein-mediated drug transport. J. Pharm. Sci. 95:2673–2683 (2006).

    PubMed  CAS  Google Scholar 

  84. M. Yamazaki, W. E. Neway, T. Ohe, I. Chen, J. F. Rowe, J. H. Hochman, M. Chiba, and J. H. Lin. In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther. 296:723–735 (2001).

    PubMed  CAS  Google Scholar 

  85. H. Tahara, M. Shono, H. Kusuhara, H. Kinoshita, E. Fuse, A. Takadate, M. Otagiri, and Y. Sugiyama. Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney. Pharm. Res. 22:647–660 (2005).

    PubMed  CAS  Google Scholar 

  86. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37:159–164 (1989).

    PubMed  CAS  Google Scholar 

  87. D. Virgintino, D. Robertson, M. Errede, V. Benagiano, F. Girolamo, E. Maiorano, L. Roncali, and M. Bertossi. Expression of P-glycoprotein in human cerebral cortex microvessels. J. Histochem. Cytochem. 50:1671–1676 (2002).

    PubMed  CAS  Google Scholar 

  88. P. L. Golden, and W. M. Pardridge. P-Glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain. Res. 819:143–146 (1999).

    PubMed  CAS  Google Scholar 

  89. R. Bendayan, P. T. Ronaldson, D. Gingras, and M. Bendayan. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J. Histochem. Cytochem. 54:1159–1167 (2006).

    PubMed  CAS  Google Scholar 

  90. S. Seetharaman, M. A. Barrand, L. Maskell, and R. J. Scheper. Multidrug resistance-related transport proteins in isolated human brain microvessels and in cells cultured from these isolates. J. Neurochem. 70:1151–1159 (1998).

    Article  PubMed  CAS  Google Scholar 

  91. Y. Ikoma, A. Takano, H. Ito, H. Kusuhara, Y. Sugiyama, R. Arakawa, T. Fukumura, R. Nakao, K. Suzuki, and T. Suhara. Quantitative analysis of 11C-verapamil transfer at the human blood–brain barrier for evaluation of P-glycoprotein function. J. Nucl. Med. 47:1531–1537 (2006).

    PubMed  CAS  Google Scholar 

  92. P. Hsiao, L. Sasongko, J. M. Link, D. A. Mankoff, M. Muzi, A. C. Collier, and J. D. Unadkat. Verapamil P-glycoprotein transport across the rat blood–brain barrier: cyclosporine, a concentration inhibition analysis, and comparison with human data. J. Pharmacol. Exp. Ther. 317:704–710 (2006).

    PubMed  CAS  Google Scholar 

  93. Y. J. Lee, J. Maeda, H. Kusuhara, T. Okauchi, M. Inaji, Y. Nagai, S. Obayashi, R. Nakao, K. Suzuki, Y. Sugiyama, and T. Suhara. In vivo evaluation of P-glycoprotein function at the blood–brain barrier in nonhuman primates using [11C]verapamil. J. Pharmacol. Exp. Ther. 316:647–653 (2006).

    PubMed  CAS  Google Scholar 

  94. A. Takano, H. Kusuhara, T. Suhara, I. Ieiri, T. Morimoto, Y. J. Lee, J. Maeda, Y. Ikoma, H. Ito, K. Suzuki, and Y. Sugiyama. Evaluation of in vivo P-glycoprotein function at the blood–brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J. Nucl. Med. 47:1427–1433 (2006).

    PubMed  CAS  Google Scholar 

  95. H. Kubota, H. Ishihara, T. Langmann, G. Schmitz, B. Stieger, H. G. Wieser, Y. Yonekawa, and K. Frei. Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res. 68:213–228 (2006).

    PubMed  CAS  Google Scholar 

  96. B. H. Huang, M. H. Wu, H. M. Tsao, C. T. Tai, K. T. Lee, Y. J. Lin, M. H. Hsieh, S. H. Lee, Y. J. Chen, J. Y. Kuo, and S. A. Chen. Morphology of the thoracic veins and left atrium in paroxysmal atrial fibrillation initiated by superior caval vein ectopy. J. Cardiovasc. Electrophysiol. 16:411–417 (2005).

    Article  PubMed  Google Scholar 

  97. Y. C. Lin, V. L. Ellingrod, J. R. Bishop, and D. D. Miller. The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther. Drug Monit. 28:668–672 (2006).

    PubMed  CAS  Google Scholar 

  98. R. J. Boado, and W. M. Pardridge. The brain-type glucose transporter mRNA is specifically expressed at the blood–brain barrier. Biochem. Biophys. Res. Commun. 166:174–179 (1990).

    PubMed  CAS  Google Scholar 

  99. S. Hori, S. Ohtsuki, K. Hosoya, E. Nakashima, and T. Terasaki. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J. Neurochem. 89:503–513 (2004).

    PubMed  CAS  Google Scholar 

  100. V. Berezowski, C. Landry, S. Lundquist, L. Dehouck, R. Cecchelli, M. P. Dehouck, and L. Fenart. Transport screening of drug cocktails through an in vitro blood–brain barrier: is it a good strategy for increasing the throughput of the discovery pipeline? Pharm. Res. 21:756–760 (2004).

    PubMed  CAS  Google Scholar 

  101. R. Cecchelli, B. Dehouck, L. Descamps, L. Fenart, V. V. Buee-Scherrer, C. Duhem, S. Lundquist, M. Rentfel, G. Torpier, and M. P. Dehouck. In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Deliv. Rev. 36:165–178 (1999).

    PubMed  CAS  Google Scholar 

  102. T. Terasaki, S. Ohtsuki, S. Hori, H. Takanaga, E. Nakashima, and K. Hosoya. New approaches to in vitro models of blood–brain barrier drug transport. Drug Discov. Today 8:944–954 (2003).

    PubMed  CAS  Google Scholar 

  103. S. Ohtsuki, S. Sato, H. Yamaguchi, M. Kamoi, T. Asashima, and T. Terasaki. Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J. Cell. Physiol. 210:81–86 (2007).

    PubMed  CAS  Google Scholar 

  104. B. B. Weksler, E. A. Subileau, N. Perriere, P. Charneau, K. Holloway, M. Leveque, H. Tricoire-Leignel, A. Nicotra, S. Bourdoulous, P. Turowski, D. K. Male, F. Roux, J. Greenwood, I. A. Romero, and P. O. Couraud. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 19:1872–1874 (2005).

    PubMed  CAS  Google Scholar 

  105. S. Ohtsuki, S. Hori, and T. Terasaki. Molecular mechanisms of drug influx and efflux transport at the blood–brain barrier (in Japanese). Nippon Yakurigaku Zasshi 122:55–64 (2003).

    PubMed  CAS  Google Scholar 

  106. Q. R. Smith, S. Momma, M. Aoyagi, and S. I. Rapoport. Kinetics of neutral amino acid transport across the blood–brain barrier. J. Neurochem. 49:1651–1658 (1987).

    PubMed  CAS  Google Scholar 

  107. Q. R. Smith, Y. Takasato, and S. I. Rapoport. Kinetic analysis of l-leucine transport across the blood–brain barrier. Brain. Res. 311:167–170 (1984).

    PubMed  CAS  Google Scholar 

  108. J. Stoll, K. C. Wadhwani, and Q. R. Smith. Identification of the cationic amino acid transporter (System y+) of the rat blood–brain barrier. J. Neurochem. 60:1956–1959 (1993).

    PubMed  CAS  Google Scholar 

  109. L. A. Wade and R. Katzman. Synthetic amino acids and the nature of l-DOPA transport at the blood-brain barrier. J. Neurochem. 25:837–842 (1975).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported, in part, by a Grant-in-Aid for Scientific Research (S) and Scientific Research on Priority Areas (17081002) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a 21st Century Center of Excellence (COE) Program grant from the Japan Society for the Promotion of Science. This study was also supported, in part, by the Industrial Technology Research Grant Program from New Energy and the Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Terasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtsuki, S., Terasaki, T. Contribution of Carrier-Mediated Transport Systems to the Blood–Brain Barrier as a Supporting and Protecting Interface for the Brain; Importance for CNS Drug Discovery and Development. Pharm Res 24, 1745–1758 (2007). https://doi.org/10.1007/s11095-007-9374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9374-5

Key words

Navigation