Skip to main content

Advertisement

Log in

In Situ-Forming Oleogel Implant for Rivastigmine Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To provide a simplified dosing schedule and potentially reduce side effects associated to peak plasma concentrations, an in situ-forming oleogel implant was studied for the sustained-release of rivastigmine.

Materials and methods

The gel was prepared by dissolving 5–10% (w/w) N-stearoyl l-alanine methyl ester (SAM) organogelator in safflower oil containing either dissolved rivastigmine or its dispersed hydrogen tartrate salt. Rheological analysis, differential scanning calorimetry, and infrared spectroscopy were carried out to assess the impact of drug incorporation on the oleogel; this was followed by in vitro and in vivo release studies.

Results

A weakening of intermolecular interactions was suggested by gel-sol transition temperature drops of 10–15°C upon incorporation of dissolved drug. Meanwhile, the dispersed drug salt induced minimal or no changes in transition temperature. Gels containing dispersed rivastigmine had the lowest burst in vitro (<15% in 24 h). In vivo, the 10% SAM formulation containing dispersed rivastigmine provided prolonged drug release within the therapeutic range for 11 days, with peak plasma levels well below the toxic threshold and up to five times lower than for the control formulation.

Conclusions

This study established SAM gels to be a promising option for sustained-release formulations in the treatment of Alzheimer’s Disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Mount and C. Downton. Alzheimer disease: progress or profit? Nat. Med. 12:780–784 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. R. Katzman. Alzheimer’s disease. NEJM 314:964–973 (1986).

    PubMed  CAS  Google Scholar 

  3. C. G. Ballard. Advances in the treatment of Alzheimer’s disease: benefits of dual cholinesterase inhibition. Eur. Neurol. 47:64–70 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. A. Lleo, S. M. Greenberg, and J. H. Growdon. Current pharmacotherapy for Alzheimer’s disease. Ann. Rev. Med. 57:513–533 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. S. Gauthier. Long-term efficacy of cholinesterase inhibitors. Brain Aging 2:9–22 (2002).

    Google Scholar 

  6. V. W. DeLaGarza. Pharmacologic treatment of Alzheimer’s disease: an update. Am. Fam. Physician. 68:1365–1372 (2003).

    PubMed  Google Scholar 

  7. V. Cotrell, K. Wild, and T. Bader. Medication management and adherence among cognitively impaired older adults. J. Gerontol. Soc. Work 47:31–46 (2006).

    Article  PubMed  Google Scholar 

  8. D. G. Wilkinson, A. P. Passmore, R. Bullock, S. W. Hopter, R. P. Smith, F. C. Protocnik, C. M. Maud, I. Engelbrecht, C. Hock, J. R. Ieni, and R. S. Bahra. A mutinational, randomised, 12-week, comparative study of donepezil and rivastigmine in patients with mild to moderate Alzheimer’s disease. Int. J. Clin. Pract. 56:441–446 (2002).

    PubMed  CAS  Google Scholar 

  9. G. Singh, S. K. Thomas, S. Arcona, V. Lingala, and A. Mithal. Treatment persistency with rivastigmine and donepezil in a large state medicaid program. J. Am. Geriatr. Soc. 53:1269–1270 (2005).

    Article  PubMed  Google Scholar 

  10. K. L. Lanctôt, N. Herrmann, K. K. Yau, L. R. Khan, B. A. Liu, M. M. Loulou, and T. R. Einarson. Efficacy and safety of choliesterase inhibitors in Alzheimer’s disease: a meta-analysis. Can. Med. Assoc. J. 169:557–564 (2003).

    Google Scholar 

  11. J. Birks, J. Grimley Evans, V. Iakovidou, and M. Tsolaki. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst. Rev. 4:CD001191 (2000).

    PubMed  Google Scholar 

  12. W. H. Liu, J. L. Song, K. Liu, D. F. Chu, and Y. X. Li. Preparation and in vitro and in vivo release studies of huperzine A loaded microspheres for the treatment of Alzheimer’s disease. J. Control Release 107:417–427 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. X. Fu, Q. Ping, and Y. Gao. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J. Microencapsul. 22:705–714 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. P. Gao, P. Ding, H. Xu, Z. Yuan, D. Chen, J. Wei, and D. Chen. In vitro and in vivo characterization of huperzine A loaded microspheres made from end-group uncapped poly(d,l-lactide acid) and poly(d,l-lactide-co-glycolide acid). Chem. Pharm. Bull. 54:89–93 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Q. Yang, D. Williams, G. Owusu-Ababio, N. K. Ebube, and M. J. Habib. Controlled release tacrine delivery system for the treatment of Alzheimer’s disease. Drug Deliv. 8:93–98 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. F. L. Tse, and R. Laplanche. Absorption, metabolism, and disposition of [14C]SDZ ENA 713, an acetylcholinesterase inhibitor, in minipigs following oral, intravenous, and dermal administration. Pharm. Res. 15:1614–1620 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. V. R. Sinha, and A. Trehan. Biodegradable microspheres for protein delivery. J. Control Release 90:261–280 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. C. B. Packhaeuser, J. Schnieders, C. G. Oster, and T. Kissel. In situ forming parenteral drug delivery systems: an overview. Eur. J. Pharm. Biopharm. 58:445–455 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. S. Bhattacharya, and Y. Krishnan-Gosh. First report of phase selective gelation of oil from oil/water mixture. Possible implications toward containing oil spills. Chem. Commun. 2:185–186 (2001).

    Article  Google Scholar 

  20. A. C. Couffin-Hoarau, A. Motulsky, P. Delmas, and J. C. Leroux. In situ-forming pharmaceutical organogels based on the self assembly of l-alanine derivatives. Pharm. Res. 21:454–457 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. A. Motulsky, M. Lafleur, A. C. Couffin-Hoarau, D. Hoarau, F. Boury, J. P. Benoit, and J. C. Leroux. Characterization and biocompatibility of organogels based on l-alanine for parenteral drug delivery implants. Biomaterials 26:6242–6253 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. F. Plourde, A. Motulsky, A. C. Couffin-Hoarau, D. Hoarau, H. Ong, and J. C. Leroux. First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. J. Control Release 108:433–441 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. K. Fredholt, D. H. Larsen, and C. Larsen. Modification of in vitro drug release rate from oily parenteral depots using a formulation approach. Eur. J. Pharm. Sci. 11:231–237 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. B. M. Rao, M. K. Srinivasu, K. P. Kumar, N. Bhradwaj, R. Ravi, P. K. Mohakhud, G. O. Reddy, and P. R. Kumar. A stability indicating LC method for rivastigmine hydrogen tartrate. J. Pharm. Biomed. Anal. 37:57–63 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. S. M. Nuno-Donlucas, J. C. Sanchez-Diaz, M. Rabelero, J. Cortes-Ortega, C.C. Luhrs-Olmos, V. V. Fernandez-Escamilla, E. Mendizabal, and J. E. Puig. Microstructured polyacrylamide hydrogels made with hydrophobic nanoparticles. J. Colloid. Interface Sci. 270:94–98 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. R. Schmidt, M. Schmutz, M. Michel, G. Decher, and P. J. Mesini. Organogelation properties of a series of oligoamides. Langmuir 18:5668–5672 (2001).

    Article  Google Scholar 

  27. M. R. Farlow. Update on rivastigmine. Neurology 9:230–234 (2003).

    Article  Google Scholar 

  28. Novartis. Exelon TM: Rivastigmine hydrogen tartrate, cholinesterase inhibitor, Compendium of pharmaceutical specialties (CPS), Canadian Pharmacists Association, Ottawa, pp 835–840 (2004).

  29. S. W. Coppack, T. J. Yost, R. M. Fisher, R. H. Eckel, and J. M. Miles. Periprandial systemic and regional lipase activity in normal humans. Am. J. Physiol. 270:E718–E722 (1996).

    PubMed  CAS  Google Scholar 

  30. B. Jeong, Y. K. Choi, Y. H. Bae, G. Zentner, and S. W. Kim. New biodegradable polymers for injectable drug delivery systems. J. Control Release 62:109–114 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. L. Appel, K. Engle, J. Jensen, L. Rajewski, and G. Zentner. An in vitro model to mimic in vivo subcutaneous monoolein degradation. Pharm. Res. 11:S-217 (1994).

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank François Plourde for his extensive help with animal studies and Gregoire Leclair for the particle size measurement. Funding for this project was provided by the Canadian Institutes for Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Leroux.

Electronic supplementary material

Below is the linked to the electronic supplementary material

Supporting information

(DOC 122 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vintiloiu, A., Lafleur, M., Bastiat, G. et al. In Situ-Forming Oleogel Implant for Rivastigmine Delivery. Pharm Res 25, 845–852 (2008). https://doi.org/10.1007/s11095-007-9384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9384-3

Key words

Navigation