Skip to main content

Advertisement

Log in

Aerodynamical, Immunological and Pharmacological Properties of the Anticancer Antibody Cetuximab Following Nebulization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Despite an increasing interest in the use of inhalation for local delivery of molecules for respiratory diseases and systemic disorders, methods to deliver therapy through airways has received little attention for lung cancer treatment. However, inhalation of anticancer drugs is an attractive alternative route to systemic administration which results in limited concentration of the medication in the lungs, and triggers whole-body toxicity. In this study, we investigated the feasibility of nebulization for therapeutic antibodies, a new class of fully-approved anticancer drugs in oncology medicine.

Materials and methods

Cetuximab, a chimeric IgG1 targeting the epidermal growth factor receptor (EGFR), was nebulized using three types of delivery devices: a jet nebulizer PARI LC+®, a mesh nebulizer AeronebPro® and an ultrasonic nebulizer SYST’AM® LS290. Aerosol size distribution was measured using a cascade impactor and aerosol droplets were observed under optical microscopy. The immunological and pharmacological properties of cetuximab were evaluated following nebulization using A431 cells.

Results

The aerosol particle clouds generated with the three nebulizers displayed similar aerodynamical characteristics, but the IgG formed aggregates in liquid phase following nebulization with both the jet and ultrasonic devices. Flow cytometry analyses and assays of EGFR-phosphorylation and cell growth inhibitions on A431 demonstrated that both the mesh and the jet nebulizers preserved the binding affinity to EGFR and the inhibitory activities of cetuximab.

Conclusions

Altogether, our results indicate that cetuximab resists the physical constraints of nebulization. Thus, airway delivery represents a promising alternative to systemic administration for local delivery of therapeutic antibodies in lung cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. G. Collins, C. Haines, R. Perkel, and R. E. Enck. Lung cancer: diagnosis and management. Am. Fam. Phys. 75:56–63 (2007).

    Google Scholar 

  2. G. Scheuch, M. J. Kohlhaeufl, P. Brand, and R. Siekmeier. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv. Drug Deliv. Rev. 58:996–1008 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. J. S. Patton, and P. R. Byron. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6:67–74 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. A. J. Bitonti, and J. A. Dumont. Pulmonary administration of therapeutic proteins using an immunoglobulin transport pathway. Adv. Drug Deliv. Rev. 58:1106–1118 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. J. S. Patton, C. S. Fishburn, and J. G. Weers. The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 1:338–344 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. R. U. Agu, M. I. Ugwoke, M. Armand, R. Kinget, and N. Verbeke. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2:198–209 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. L. Fabbri. Pulmonary safety of inhaled insulins: a review of the current data. Curr. Med. Res. Opin. 22(Suppl 3):21–28 (2006).

    Article  Google Scholar 

  8. F. Gagnadoux, A. Le Pape, E. Lemarie, S. Lerondel, I. Valo, V. Leblond, J. Racineux, and T. Urban. Aerosol delivery of chemotherapy in an orthotopic model of lung cancer. Eur. Respir. J. 26:657–661 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. A. E. Hershey, I. D. Kurzman, L. J. Forrest, C. A. Bohling, M. Stonerook, M. E. Placke, A. R. Imondi, and D. M. Vail. Inhalation chemotherapy for macroscopic primary or metastatic lung tumors: proof of principle using dogs with spontaneously occurring tumors as a model. Clin. Cancer Res. 5:2653–2659 (1999).

    Google Scholar 

  10. N. V. Koshkina, J. C. Waldrep, L. E. Roberts, E. Golunski, S. Melton, and V. Knight. Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin. Cancer Res. 7:3258–3262 (2001).

    PubMed  CAS  Google Scholar 

  11. N. V. Koshkina, and E. S. Kleinerman. Aerosol gemcitabine inhibits the growth of primary osteosarcoma and osteosarcoma lung metastases. Int. J. Cancer 116:458–463 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. V. Knight, N. V. Koshkina, J. C. Waldrep, B. C. Giovanella, and B. E. Gilbert. Anticancer effect of 9-nitrocamptothecin liposome aerosol on human cancer xenografts in nude mice. Cancer Chemother. Pharmacol. 44:177–186 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. P. M. Anderson, S. N. Markovic, J. A. Sloan, M. L. Clawson, M. Wylam, C. A. Arndt, W. A. Smithson, P. Burch, M. Gornet, and E. Rahman. Aerosol granulocyte macrophage-colony stimulating factor: a low toxicity, lung-specific biological therapy in patients with lung metastases. Clin. Cancer Res. 5:2316–2323 (1999).

    PubMed  CAS  Google Scholar 

  14. C. F. Verschraegen, B. E. Gilbert, E. Loyer, A. Huaringa, G. Walsh, R. A. Newman, and V. Knight. Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(s)-camptothecin in patients with advanced pulmonary malignancies. Clin. Cancer Res. 10:2319–2326 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. G. A. Otterson, M. A. Villalona-Calero, S. Sharma, M. G. Kris, A. Imondi, M. Gerber, D. A. White, M. J. Ratain, J. H. Schiller, A. Sandler, M. Kraut, S. Mani, and J. R. Murren. Phase I study of inhaled doxorubicin for patients with metastatic tumors to the lungs. Clin. Cancer Res. 13:1246–1252 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. B. P. H. Wittgen, P. W. A. Kunst, K. van der Born, A. W. van Wijk, W. Perkins, F. G. Pilkiewicz, R. Perez-Soler, S. Nicholson, G. J. Peters, and P. E. Postmus. Phase I study of aerosolized slit cisplatin in the treatment of patients with carcinoma of the lung. Clin. Cancer Res. 13:2414–2421 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. M. Z. Lin, M. A. Teitell, and G. J. Schiller. The evolution of antibodies into versatile tumor-targeting agents. Clin. Cancer Res. 11:129–138 (2005).

    PubMed  CAS  Google Scholar 

  18. M. S. Nayeem, and R. H. Khan. Recombinant antibodies in cancer therapy. Curr. Protein Pept. Sci. 7:165–170 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. L. Dellamary, D. J. Smith, A. Bloom, S. Bot, G. Guo, H. Deshmuk, M. Costello, and A. Bot. Rational design of solid aerosols for immunoglobulin delivery by modulation of aerodynamic and release characteristics. J. Control. Release 95:489–500 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. S. Schule, W. Friess, K. Bechtold-Peters, and P. Garidel. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations. Eur. J. Pharm. Biopharm. 65:1–9 (2007).

    Article  PubMed  Google Scholar 

  21. M. Maury, K. Murphy, S. Kumar, A. Mauerer, and G. Lee. Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G. Eur. J. Pharm. Biopharm. 59:251–261 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. A. J. Bitonti, J. A. Dumont, S. C. Low, R. T. Peters, K. E. Kropp, V. J. Palombella, J. M. Stattel, Y. Lu, C. A. Tan, J. J. Song, A. M. Garcia, N. E. Simister, G. M. Spiekermann, W. I. Lencer, and R. S. Blumberg. Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc. Natl. Acad. Sci. U S A. 101:9763–9768 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. S. C. Low, S. L. Nunes, A. J. Bitonti, and J. A. Dumont. Oral and pulmonary delivery of fsh-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis. Hum. Reprod. 20:1805–1813 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. N. Hanna, R. Lilenbaum, R. Ansari, T. Lynch, R. Govindan, P. A. Janne, and P. Bonomi. Phase II trial of cetuximab in patients with previously treated non-small-cell lung cancer. J. Clin. Oncol. 24:5253–5258 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. J. V. Heymach, M. Nilsson, G. Blumenschein, V. Papadimitrakopoulou, and R. Herbst. Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clin. Cancer Res. 12:4441s–4445s (2006).

    Article  PubMed  CAS  Google Scholar 

  26. R. C. Lilenbaum. The evolving role of cetuximab in non-small cell lung cancer. Clin. Cancer Res. 12:4432s–4435s (2006).

    Article  PubMed  CAS  Google Scholar 

  27. D. D. Miller, M. M. Amin, L. B. Palmer, A. R. Shah, and G. C. Smaldone. Aerosol delivery and modern mechanical ventilation: in vitro/in vivo evaluation. Am. J. Respir. Crit. Care Med. 168:1205–1209 (2003).

    Article  PubMed  Google Scholar 

  28. L. Vecellio None, D. Grimbert, M. H. Becquemin, E. Boissinot, A. Le Pape, E. Lemarie, and P. Diot. Validation of laser diffraction method as a substitute for cascade impaction in the European project for a nebulizer standard. J. Aerosol Med. 14:107–114 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. D. S. Salomon, R. Brandt, F. Ciardiello, and N. Normanno. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19:183–232 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. M. L. Janmaat, F. A. E. Kruyt, J. A. Rodriguez, and G. Giaccone. Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or akt kinase pathways. Clin. Cancer Res. 9:2316–2326 (2003).

    PubMed  CAS  Google Scholar 

  31. G. N. Gill, T. Kawamoto, C. Cochet, A. Le, J. D. Sato, H. Masui, C. McLeod, and J. Mendelsohn. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J. Biol. Chem. 259:7755–7760 (1984).

    PubMed  CAS  Google Scholar 

  32. W. K. Bleeker, J. J. Lammerts van Bueren, H. H. van Ojik, A. F. Gerritsen, M. Pluyter, M. Houtkamp, E. Halk, J. Goldstein, J. Schuurman, M. A. van Dijk, J. G. J. van de Winkel, and P. W. H. I. Parren. Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J. Immunol. 173:4699–4707 (2004).

    PubMed  CAS  Google Scholar 

  33. J. Baselga. The EGFR as a target for anticancer therapy-focus on cetuximab. Eur. J. Cancer. 37(Suppl 4):16–22 (2001).

    Article  Google Scholar 

  34. R. U. Agu, S. Valiveti, K. S. Paudel, M. Klausner, P. J. Hayden, and A. L. Stinchcomb. Permeation of win 55,212-2, a potent cannabinoid receptor agonist, across human tracheo-bronchial tissue in vitro and rat nasal epithelium vivo. J. Pharm. Pharmacol. 58:1459–1465 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. H. Steckel, and F. Eskandar. Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers. Eur. J. Pharm. Sci. 19:443–455 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. I. Fangmark, and J. C. Carpin. Protein nebulization. J. Aerosol. Sci. 27:231–232 (1996).

    Article  Google Scholar 

  37. H. C. Mahler, R. Müller, W. Frieß, A. Delille, and S. Matheus. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur. J. Pharm. Biopharm. 59(3):407–417 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. H. Schellekens. Factors influencing the immunogenicity of therapeutic proteins.Nephrol. Dial. Transplant. 6:3–9 (2005).

    Google Scholar 

Download references

Acknowledgements

We thank Michèle De Monte for helpful suggestions in statistical analysis. This work was supported by grants from Cancéropôle Grand Ouest, IFR135 (Institut Fédératif de Recherche), la Ligue contre le Cancer. Agnès Maillet’s fellowships were donated by SPLF (Société de Pneumologie de Langue Française) and Pneumologie Dévelopement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Heuzé-Vourc’h.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maillet, A., Congy-Jolivet, N., Le Guellec, S. et al. Aerodynamical, Immunological and Pharmacological Properties of the Anticancer Antibody Cetuximab Following Nebulization. Pharm Res 25, 1318–1326 (2008). https://doi.org/10.1007/s11095-007-9481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9481-3

Key words

Navigation