Skip to main content

Advertisement

Log in

Quantitative Atlas of Membrane Transporter Proteins: Development and Application of a Highly Sensitive Simultaneous LC/MS/MS Method Combined with Novel In-silico Peptide Selection Criteria

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop an absolute quantification method for membrane proteins, and to construct a quantitative atlas of membrane transporter proteins in the blood–brain barrier, liver and kidney of mouse.

Methods

Mouse tissues were digested with trypsin, and mixed with stable isotope labeled-peptide as a quantitative standard. The amounts of transporter proteins were simultaneously determined by liquid chromatography–tandem mass spectrometer (LC/MS/MS).

Results

The target proteins were digested in-silico, and target peptides for analysis were chosen on the basis of the selection criteria. All of the peptides selected exhibited a detection limit of 10 fmol and linearity over at least two orders of magnitude in the calibration curve for LC/MS/MS analysis. The method was applied to obtain the expression levels of 34 transporters in liver, kidney and blood–brain barrier of mouse. The quantitative values of transporter proteins showed an excellent correlation with the values obtained with existing methods using antibodies or binding molecules.

Conclusion

A sensitive and simultaneous quantification method was developed for membrane proteins. By using this method, we constructed a quantitative atlas of membrane transporter proteins at the blood–brain barrier, liver and kidney in mouse. This technology is expected to have major implications for various fields of biomedical science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABC transporters:

ATP binding cassette transporters

CV:

coefficient of variation

ESI:

electro-spray ionization

HSA:

human serum albumin

HUGO:

Human Genome Organization

LC:

liquid chromatography

MRM:

multiple reaction monitoring

MS/MS:

tandem mass spectrometry

PBS:

phosphate-buffered saline

PMSF:

phenylmethylsulfonyl fluoride

Q1:

quadrupole 1

Q3:

quadrupole 3

SLC transporters:

solute carrier family of transporters

References

  1. J. Nezu, I. Tamai, A. Oku, R. Ohashi, H. Yabuuchi, N. Hashimoto, H. Nikaido, Y. Sai, A. Koizumi, Y. Shoji, G. Takada, T. Matsuishi, M. Yoshino, H. Kato, T. Ohura, G. Tsujimoto, J. Hayakawa, M. Shimane, and A. Tsuji. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat. Genet. 21:91–94 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. M. J. Welsh, and A. E. Smith. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. J. Kartenbeck, U. Leuschner, R. Mayer, and D. Keppler. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin–Johnson syndrome. Hepatology 23:1061–1066 (1996).

    PubMed  CAS  Google Scholar 

  4. G. Szakacs, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5:219–234 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. N. Mizuno, T. Niwa, Y. Yotsumoto, and Y. Sugiyama. Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev. 55:425–461 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. A. Tsuji. Impact of transporter-mediated drug absorption, distribution, elimination and drug interactions in antimicrobial chemotherapy. J. Infect. Chemother. 12:241–250 (2006).

    Article  PubMed  Google Scholar 

  7. Y. Shitara, T. Horie, and Y. Sugiyama. Transporters as a determinant of drug clearance and tissue distribution. Eur. J. Pharm. Sci. 27:425–446 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. S. Ohtsuki, and T. Terasaki. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; Importance for CNS drug discovery and development. Pharm. Res. 24:1745–1758 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. R. Aebersold, and M. Mann. Mass spectrometry-based proteomics. Nature 422:198–207 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. S. D. Patterson, and R. H. Aebersold. Proteomics: the first decade and beyond. Nat. Genet. 33(Suppl):311–323 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. B. Domon, and R. Aebersold. Mass spectrometry and protein analysis. Science 312:212–217 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. H. Steen, and A. Pandey. Proteomics goes quantitative: measuring protein abundance. Trends Biotechnol. 20:361–364 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. S. E. Ong, L. J. Foster, and M. Mann. Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17:994–999 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. J. A. Ranish, E. C. Yi, D. M. Leslie, S. O. Purvine, D. R. Goodlett, J. Eng, and R. Aebersold. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33:349–355 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. L. Anderson, and C. L. Hunter. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics 5:573–588 (2006).

    PubMed  CAS  Google Scholar 

  17. G. Marko-Varga, H. Lindberg, C. G. Lofdahl, P. Jonsson, L. Hansson, M. Dahlback, E. Lindquist, L. Johansson, M. Foster, and T. E. Fehniger. Discovery of biomarker candidates within disease by protein profiling: principles and concepts. J. Proteome Res. 4:1200–1212 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. D. R. Barnidge, E. A. Dratz, T. Martin, L. E. Bonilla, L. B. Moran, and A. Lindall. Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal. Chem. 75:445–451 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad.Sci.USA 100:6940–6945 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. H. Keshishian, T. Addona, M. Burgess, E. Kuhn, and S. A. Carr. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol. Cell. Proteomics 6:2212–2229 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. J. S. Andersen, C. J. Wilkinson, T. Mayor, P. Mortensen, E. A. Nigg, and M. Mann. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. S. Hori, S. Ohtsuki, M. Tachikawa, N. Kimura, T. Kondo, M. Watanabe, E. Nakashima, and T. Terasaki. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J. Neurochem. 90:526–536 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. R. J. Boado, and M. M. Pardridge. A one-step procedure for isolation of poly(A) mRNA from isolated brain capillaries and endothelial cells in culture. J. Neurochem. 57:2136–2139 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. W. M. Pardridge, R. J. Boado, and C. R. Farrell. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood–brain barrier. Studies with quantitative western blotting and in situ hybridization. J. Biol. Chem. 265:18035–18040 (1990).

    PubMed  CAS  Google Scholar 

  25. K. G. Mawuenyega, H. Kaji, Y. Yamuchi, T. Shinkawa, H. Saito, M. Taoka, N. Takahashi, and T. Isobe. Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography–tandem mass spectrometry. J. Proteome Res. 2:23–35 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. P. Chen, X. Li, Y. Sun, Z. Liu, R. Cao, Q. He, M. Wang, J. Xiong, J. Xie, X. Wang, and S. Liang. Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J. Neurochem. 98:1126–1140 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. K. Nagano, M. Taoka, Y. Yamauchi, C. Itagaki, T. Shinkawa, K. Nunomura, N. Okamura, N. Takahashi, T. Izumi, and T. Isobe. Large-scale identification of proteins expressed in mouse embryonic stem cells. Proteomics 5:1346–1361 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. A. V. Pshezhetsky, M. Fedjaev, L. Ashmarina, A. Mazur, L. Budman, D. Sinnett, D. Labuda, J. F. Beaulieu, D. Menard, I. Nifant’ev, and E. Levy. Subcellular proteomics of cell differentiation: quantitative analysis of the plasma membrane proteome of Caco-2 cells. Proteomics 7:2201–2215 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. E. Kuhn, J. Wu, J. Karl, H. Liao, W. Zolg, and B. Guild. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 4:1175–1186 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. S. L. Wu, H. Amato, R. Biringer, G. Choudhary, P. Shieh, and W. S. Hancock. Targeted proteomics of low-level proteins in human plasma by LC/MSn: using human growth hormone as a model system. J. Proteome Res. 1:459–465 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. D. R. Barnidge, M. K. Goodmanson, G. G. Klee, and D. C. Muddiman. Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-Ms/MS using protein cleavage and isotope dilution mass spectrometry. J. Proteome Res. 3:644–652 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. D. D. Sabatini, and G. Blobel. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes. J. Cell. Biol. 45:146–157 (1970).

    Article  PubMed  CAS  Google Scholar 

  33. P. Mallick, M. Schirle, S. S. Chen, M. R. Flory, H. Lee, D. Martin, J. Ranish, B. Raught, R. Schmitt, T. Werner, B. Kuster, and R. Aebersold. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol. 25:125–131 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. S. Ohtsuki. New aspects of the blood–brain barrier transporters; its physiological roles in the central nervous system. Biol. Pharm. Bull. 27:1489–1496 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. S. Conrad, A. Viertelhaus, A. Orzechowski, J. Hoogstraate, K. Gjellan, D. Schrenk, and H. Kauffmann. Sequencing and tissue distribution of the canine MRP2 gene compared with MRP1 and MDR1. Toxicology 156:81–91 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. A. H. Schinkel, U. Mayer, E. Wagenaar, C. A. A. Mol, L. Deemter, J. M. Zijlmans, W. E. Fibbe, and P. Borst. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl. Acad. Sci. USA 94:4028–4033 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Huang. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis Rev. 26:183–201 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. J. Konig, A. Seithel, U. Gradhand, and M. F. Fromm. Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch. Pharmacol. 372:432–443 (2006).

    Article  PubMed  Google Scholar 

  39. C. Hilgendorf, G. Ahlin, A. Seithel, P. Artursson, A. L. Ungell, and J. E. Karlsson. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos. 35:1333–1340 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. T. Terasaki, and S. Ohtsuki. Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood–brain barrier: an overview of biology and methodology. NeuroRx 2:63–72 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms N. Funayama for secretarial assistance. This study was supported in part by a Grant-in-Aid for Young Scientist (B) and Scientific Research on Priority Areas (17081002) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Grant-in-Aid for Scientific Research (S), Scientific Research (B) and a 21st Century Center of Excellence (COE) Program grant from the Japan Society for the Promotion of Science. This study was also supported in part by the Industrial Technology Research Grant Program from New Energy and the Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Terasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiie, J., Ohtsuki, S., Iwase, R. et al. Quantitative Atlas of Membrane Transporter Proteins: Development and Application of a Highly Sensitive Simultaneous LC/MS/MS Method Combined with Novel In-silico Peptide Selection Criteria. Pharm Res 25, 1469–1483 (2008). https://doi.org/10.1007/s11095-008-9532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9532-4

Key words

Navigation