Skip to main content

Advertisement

Log in

Carnosol, a Dietary Diterpene, Displays Growth Inhibitory Effects in Human Prostate Cancer PC3 Cells Leading to G2-Phase Cell Cycle Arrest and Targets the 5′-AMP-Activated Protein Kinase (AMPK) Pathway

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study examines the anti-cancer effect of carnosol in human prostate cancer PC3 cells and its role in modulating multiple signaling pathways associated with carcinogenesis.

Methods

PC3 cells were treated with carnosol and were evaluated using a flow cytometry, a protein array and Western blot analysis to identify signaling pathways targeted by carnosol.

Results

Using an MTT assay we found that carnosol (10–70 μM) decreases cell viability in a time and dose-dependent manner. Further analysis using flow cytometry as well as biochemical analysis identified G2-phase cell cycle arrest. To establish a more precise mechanism, we performed a protein array that evaluated 638 proteins involved in cell signaling pathways. The protein array identified 5′-AMP-activated protein kinase (AMPK), a serine/threonine protein kinase involved in the regulation of cellular energy balance as a potential target. Further downstream effects consistent with cancer inhibition included the modulation of the mTOR/HSP70S6k/4E-BP1 pathway. Additionally, we found that carnosol targeted the PI3K/Akt pathway in a dose dependent manner.

Conclusions

These results suggest that carnosol targets multiple signaling pathways that include the AMPK pathway. The ability of carnosol to inhibit prostate cancer in vitro suggests carnosol may be a novel agent for the management of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AICAR:

5-aminoimidazole-4-carboxamide ribonucleoside

AMPK:

5′-AMP-activated protein kinase

cdks:

cyclin dependent kinases

DMSO:

dimethyl sulfoxide

FBS:

fetal bovine serum

LH-RH:

luteinizing hormone-releasing hormone

mTOR:

mammalian target of rapamycin

PBS:

phophsphate buffered saline

Pca:

prostate cancer

PI3K:

phosphatidylinositol 3-kinase

PTEN:

phosphatase and tensin homologue deleted on chromosome ten

TSC2:

tuberous sclerosis complex 2

References

  1. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun. Cancer statistics. CA Cancer J. Clin. 57:43–66 (2007).

    PubMed  Google Scholar 

  2. D. N. Syed, N. Khan, F. Afaq, and H. Mukhtar. Chemoprevention of prostate cancer through dietary agents: progress and promise. Cancer Epidemiol. Biomarkers Prev. 16:2193–2203 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. S. R. Denmeade, X. S. Lin, and J. T. Isaacs. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28:251–265 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. J. J. Johnson, and H. Mukhtar. Curcumin for chemoprevention of colon cancer. Cancer Lett. 255:170–181 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. T. Kakizoe. Chemoprevention of cancer—focusing on clinical trials. Jpn. J. Clin. Oncol. 33:421–442 (2003).

    Article  PubMed  Google Scholar 

  6. O. I. Aruoma, J. P. Spencer, R. Rossi, R. Aeschbach, A. Khan, N. Mahmood, A. Munoz, A. Murcia, J. Butler, and B. Halliwell. An evaluation of the antioxidant and antiviral action of extracts of rosemary and Provencal herbs. Food Chem. Toxicol. 34:449–456 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. M. T. Huang, C. T. Ho, Z. Y. Wang, T. Ferraro, Y. R. Lou, K. Stauber, W. Ma, C. Georgiadis, J. D. Laskin, and A. H. Conney. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res. 54:701–708 (1994).

    PubMed  CAS  Google Scholar 

  8. O. I. Aruoma, B. Halliwell, R. Aeschbach, and J. Loligers. Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. Xenobiotica 22:257–268 (1992).

    PubMed  CAS  Google Scholar 

  9. K. Singletary, C. MacDonald, and M. Wallig. Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 104:43–48 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. A. E. Moran, A. M. Carothers, M. J. Weyant, M. Redston, and M. M. Bertagnolli. Carnosol inhibits beta-catenin tyrosine phosphorylation and prevents adenoma formation in the C57BL/6J/Min/+ (Min/+) mouse. Cancer Res. 65:1097–1104 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. J. M. Visanji, D. G. Thompson, and P. J. Padfield. Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett. 237:130–136 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. H. Motoshima, B. J. Goldstein, M. Igata, and E. Araki. AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J. Physiol. 574:63–71 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. X. Xiang, A. K. Saha, R. Wen, N. B. Ruderman, and Z. Luo. AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem. Biophys. Res. Commun. 321:161–167 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. D. G. Hardieand, and D. Carling. The AMP-activated protein kinase-fuel gauge of the mammalian cell? Eur. J. Biochem. 246:259–273 (1997).

    Article  Google Scholar 

  15. B. E. Kemp, D. Stapleton, D. J. Campbell, Z. P. Chen, S. Murthy, M. Walter, A. Gupta, J. J. Adams, F. Katsis, B. van Denderen, I. G. Jennings, T. Iseli, B. J. Michell, and L. A. Witters. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 31:162–168 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Y. Fang, M. Vilella-Bach, R. Bachmann, A. Flanigan, and J. Chen. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. T. J. Guan, F. J. Qin, J. H. Du, L. Geng, Y. Y. Zhang, and M. Li. AICAR inhibits proliferation and induced S-phase arrest, and promotes apoptosis in CaSki cells. Acta. Pharmacol. Sin. 28:1984–1990 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. D. R. Bolster, S. J. Crozier, S. R. Kimball, and L. S. Jefferson. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J. Biol. Chem. 277:23977–23980 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. K. Imamura, T. Ogura, A. Kishimoto, M. Kaminishi, and H. Esumi. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-d-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 287:562–567 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. N. Khan, F. Afaq, M. H. Kweon, K. Kim, and H. Mukhtar. Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice. Cancer Res. 67:3475–3482 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. D. Xiao, and S. V. Singh. Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells. Carcinogenesis. 27:533–540 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. B. T. Nave, M. Ouwens, D. J. Withers, D. R. Alessi, and P. R. Shepherd. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344(Pt 2):427–431 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. K. Inoki, T. Zhu, and K.L. Guan. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 115:577–590 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Clinical and Translational Science Award (CTSA) training grant (J.Johnson) through the Institute for Clinical and Translation Research (ICTR) at the University of Wisconsin. (NIH 1KL2RR025012-01 and K12 RR023268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Mukhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J.J., Syed, D.N., Heren, C.R. et al. Carnosol, a Dietary Diterpene, Displays Growth Inhibitory Effects in Human Prostate Cancer PC3 Cells Leading to G2-Phase Cell Cycle Arrest and Targets the 5′-AMP-Activated Protein Kinase (AMPK) Pathway. Pharm Res 25, 2125–2134 (2008). https://doi.org/10.1007/s11095-008-9552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9552-0

Key words

Navigation