Skip to main content
Log in

Development of a Bayesian Forecasting Method for Warfarin Dose Individualisation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The aim of this study was to develop a Bayesian dose individualisation tool for warfarin. This was incorporated into the freely available software TCIWorks (www.tciworks.info) for use in the clinic.

Methods

All pharmacokinetic and pharmacodynamic (PKPD) models for warfarin in the medical literature were identified and evaluated against two warfarin datasets. The model with the best external validity was used to develop an optimal design for Bayesian parameter control. The performance of this design was evaluated using simulation-estimation techniques. Finally, the model was implemented in TCIWorks.

Results

A recently published warfarin KPD model was found to provide the best fit for the two external datasets. Optimal sampling days within the first 14 days of therapy were found to be days 3, 4, 5, 11, 12, 13 and 14. Simulations and parameter estimations suggested that the design will provide stable estimates of warfarin clearance and EC50. A single patient example showed the potential clinical utility of the method in TCIWorks.

Conclusions

A Bayesian dose individualisation tool for warfarin was developed. Future research to assess the predictive performance of the tool in warfarin patients is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSV:

between-subject variability

CL:

clearance

CYP:

cytochrome P450

diag:

diagonal

EC50:

the drug concentration at 1/2 of maximum effect

FIM:

Fisher information matrix

INR:

international normalised ratio

J:

Jacobian matrix

KPD:

kinetic-pharmacodynamic

MAP:

maximum a posterior

MTT:

mean transit time

PCA:

prothrombin complex activity

PKPD:

pharmacokinetic-pharmacodynamic

PT:

prothrombin time

RSE:

relative standard error

RUV:

residual unexplained variability

SE:

standard error

VKORC1:

vitamin K epoxide reductase

VPC:

visual predictive check (external [e] or internal [i])

REFERENCES

  1. The International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.

    Article  Google Scholar 

  2. Anticoagulants in the Secondary Prevention of Events in Coronary Thrombosis (ASPECT) Research Group. Effect of long-term oral anticoagulant treatment on mortality and cardiovascular morbidity. Lancet. 1994;343(8896):499–503.

    Google Scholar 

  3. The Stroke Prevention in Atrial Fibrillation Investigators. Bleeding during antithrombotic therapy in patients with atrial fibrillation. Arch Intern Med. 1996;156(4):409–16.

    Article  Google Scholar 

  4. Jones M, McEwan P, Morgan CL, Peters JR, Goodfellow J, Currie CJ. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart. 2005;91(4):472–7.

    Article  PubMed  CAS  Google Scholar 

  5. Hylek EM, Evans-Molina C, Shea C, Henault LE, Regan S. Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation. Circulation. 2007;115(21):2689–96.

    Article  PubMed  CAS  Google Scholar 

  6. Oake N, Fergusson DA, Forster AJ, van Walraven C. Frequency of adverse events in patients with poor anticoagulation: a meta-analysis. Can Med Assoc J. 2007;176(11):1589–94.

    Article  Google Scholar 

  7. Oake N, Jennings A, Forster AJ, Fergusson D, Doucette S, van Walraven C. Anticoagulation intensity and outcomes among patients prescribed oral anticoagulant therapy: a systematic review and meta-analysis. Can Med Assoc J. 2008;179(3):235–44.

    Article  Google Scholar 

  8. Tan ES, Bonnett TJ, Abdelhafiz AH. Delayed discharges due to initiation of warfarin in atrial fibrillation: a prospective audit. Am J Ger Pharmacol. 2007;5(3):232–5.

    Article  CAS  Google Scholar 

  9. The Stroke Prevention in Atrial Fibrillation Investigators. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet. 1996;348(9028):633–8.

    Article  Google Scholar 

  10. van Walraven C, Jennings A, Oake N, Fergusson D, Forster AJ. Effect of study setting on anticoagulation control. Chest. 2006;129(5):1155–66.

    Article  PubMed  Google Scholar 

  11. Rose AJ, Ozonoff A, Berlowitz DR, Henault LE, Hylek EM. Warfarin dose management affects INR control. J Thromb Haemost. 2009;7(1):94–101.

    Article  PubMed  CAS  Google Scholar 

  12. Kalra L, Yu G, Perez I, Lakhani A, Donaldson N. Prospective cohort study to determine if trial efficacy of anticoagulation for stroke prevention in atrial fibrillation translates into clinical effectiveness. BMJ. 2000;320(7244):1236–9.

    Article  PubMed  CAS  Google Scholar 

  13. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.

    Article  PubMed  CAS  Google Scholar 

  14. Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenom J. 2007;7(2):99–111.

    Article  CAS  Google Scholar 

  15. McMillin GA, Melis R, Wilson A, Strong MB, Wanner NA, Vinik RG, et al. Gene-based warfarin dosing compared with standard of care practices in an orthopedic surgery population: a prospective, parallel cohort study. Ther Drug Monit. 2010;32(3):338–45.

    Article  PubMed  CAS  Google Scholar 

  16. Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2007;83(3):460–70.

    Article  PubMed  Google Scholar 

  17. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJR, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113(4):784–92.

    Article  PubMed  CAS  Google Scholar 

  18. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.

    Article  PubMed  CAS  Google Scholar 

  19. Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL, Pirmohamed M, et al. Integration of genetic, clinical, and inr data to refine warfarin dosing. Clin Pharmacol Ther. 2010;87(5):572–8.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116(22):2563–70.

    Article  PubMed  CAS  Google Scholar 

  21. Sheiner LB, Beal S, Rosenberg B, Marathe VV. Forecasting individual pharmacokinetics. Clin Pharmacol Ther. 1979;26(3):294–305.

    PubMed  CAS  Google Scholar 

  22. Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci. 1982;71(12):1344–8.

    Article  PubMed  CAS  Google Scholar 

  23. Duffull SB, Chadaud S, Nony P, Laveille C, Girard P, Aarons L. A pharmacokinetic simulation model for ivabradine in healthy volunteers. Eur J Pharm Sci. 2000;10(4):285–94.

    Article  PubMed  CAS  Google Scholar 

  24. O’Reilly RA, Aggeler PM, Leong LS. Studies on the coumadin anticoagulant drugs: the pharmacodynamics of warfarin in man. J Clin Invest. 1963;42:1542–51.

    Article  PubMed  Google Scholar 

  25. O’Reilly RA, Aggeler PM. Studies on coumarin anticoagulant drugs. Initiation of warfarin therapy without a loading dose. Circulation. 1968;38(1):169–77.

    PubMed  Google Scholar 

  26. Mohammed Abdul M, Jiang X, Williams K, Day R, Roufogalis B, Liauw W, et al. Pharmacodynamic interaction of warfarin with cranberry but not with garlic in healthy subjects. Br J Pharmacol. 2008;154:1691–700.

    Article  PubMed  CAS  Google Scholar 

  27. Jiang XM, Blair EYL, McLachlan AJ. Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J Clin Pharmacol. 2006;46(11):1370–8.

    Article  PubMed  CAS  Google Scholar 

  28. Hamberg AK, Wadelius M, Lindh JD, Dahl ML, Padrini R, Deloukas P, et al. A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variations in CYP2C9, VKORC1, and age. Clin Pharmacol Ther. 2010;87(6):727–34.

    Article  PubMed  CAS  Google Scholar 

  29. Jacqmin P, Snoeck E, van Schaick E, Gieschke R, Pillai P, Steimer J, et al. Modellling response time profile in the absence of drug concentrations: definition and performance evaluation of the K-PD model. J Pharmacokinet Pharmacodyn. 2007;34(1):57–85.

    Article  PubMed  CAS  Google Scholar 

  30. Duffull SB, Retout S, Mentre F. The use of simulated annealing for finding optimal population designs. Comput Methods Programs Biomed. 2002;69(1):25–35.

    Article  PubMed  Google Scholar 

  31. Holford NH. Target concentration intervention: beyond Y2K. Br J Clin Pharmacol. 2001;52 Suppl 1:55S–9.

    Article  PubMed  Google Scholar 

  32. Sheiner LB. Computer-aided long-term anticoagulation therapy. Comput Biomed Res. 1969;2(6):507–18.

    Article  PubMed  CAS  Google Scholar 

  33. Nagashima R, O’Reilly RA, Levy G. Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin. Clin Pharmacol Ther. 1969;10(1):22–35.

    PubMed  CAS  Google Scholar 

  34. Theofanous TG, Barile RG. Multiple-dose kinetics of oral anticoagulants: methods of analysis and optimized dosing. J Pharm Sci. 1973;62(2):261–6.

    Article  PubMed  CAS  Google Scholar 

  35. Wiegman H, Vossepoel AM. A computer program for long term anticoagulation control. Comput Programs Biomed. 1977;7(2):71–84.

    Article  PubMed  CAS  Google Scholar 

  36. Wingard Jr LB, O’Reilly RA, Levy G. Pharmacokinetics of warfarin enantiomers: a search for intrasubject correlations. Clin Pharmacol Ther. 1978;23(2):212–7.

    PubMed  CAS  Google Scholar 

  37. Svec JM, Coleman RW, Mungall DR, Ludden TM. Bayesian pharmacokinetic/pharmacodynamic forecasting of prothrombin response to warfarin therapy: preliminary evaluation. Ther Drug Monit. 1985;7(2):174–80.

    Article  PubMed  CAS  Google Scholar 

  38. Murray B, Coleman R, McWaters D, Ludden T, Mungall D. Pharmacodynamics of warfarin at steady state. Ther Drug Monit. 1987;9(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  39. Powers WF, Abbrecht PH, Covell DG. Systems and microcomputer approach to anticoagulant therapy. IEEE Trans Biomed Eng. 1980;27(9):520–3.

    Article  PubMed  CAS  Google Scholar 

  40. Vadher B, Patterson DLH, Leaning M. Prediction of the international normalized ratio and maintenance dose during the initiation of warfarin therapy. Br J Clin Pharmacol. 1999;48(1):63–70.

    Article  PubMed  CAS  Google Scholar 

  41. Abbrecht PH, O’Leary TJ, Behrendt DM. Evaluation of a computer-assisted method for individualized anticoagulation: retrospective and prospective studies with a pharmacodynamic model. Clin Pharmacol Ther. 1982;32(1):129–36.

    Article  PubMed  CAS  Google Scholar 

  42. Chan E, O’Reilly R, Rowland M. Stereochemical aspects of warfarin in man: a combined pharmacokinetic-pharmacodynamic model. Br J Clin Pharmacol. 1984;19:545P.

    Google Scholar 

  43. Holford NH. Rational warfarin dosing: a pharmacokinetic-pharmacodynamic analysis. Clin Pharmacol Ther [abstract]. 1986;39:199.

    Google Scholar 

  44. Yuen E, Gueorguieva I, Wise S, Soon D, Aarons L. Ethnic differences in the population pharmacokinetics and pharmacodynamics of warfarin. J Pharmacokinet Pharmacodyn. 2010;37(1):3–24.

    Article  PubMed  CAS  Google Scholar 

  45. Hamberg AK, Dahl ML, Barban M, Scordo MG, Wadelius M, Pengo V, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther. 2007;81(4):529–38.

    Article  PubMed  CAS  Google Scholar 

  46. Pitsiu M, Parker EM, Aarons L, Rowland M. A Bayesian method based on clotting factor activity for the prediction of maintenance warfarin dosage regimens. Ther Drug Monit. 2003;25(1):36–40.

    Article  PubMed  CAS  Google Scholar 

  47. Manotti C, Moia M, Palareti G, Pengo V, Ria L, Dettori AG. Effect of computer-aided management on the quality of treatment in anticoagulated patients: a prospective, randomized, multicenter trial of APROAT (Automated PRogram for Oral Anticoagulant Treatment). Haematologica. 2001;86(10):1060–70.

    PubMed  CAS  Google Scholar 

  48. Poller L, Shiach CR, MacCallum PK, Johansen AM, Munster AM, Magalhaes A, et al. Multicentre randomised study of computerised anticoagulant dosage. Lancet. 1998;352(9139):1505–9.

    Article  PubMed  CAS  Google Scholar 

  49. Ryan PJ, Gilbert M, Rose PE. Computer control of anticoagulant dose for therapeutic management. Br Med J. 1989;299(6709):1207–9.

    Article  CAS  Google Scholar 

  50. Roberts GW, Helboe T, Nielsen CBM, Gallus AS, Jensen I, Cosh DG, et al. Assessment of an age-adjusted warfarin initiation protocol. Ann Pharmacother. 2003;37(6):799–803.

    Article  PubMed  CAS  Google Scholar 

  51. Lee J, Lin T. Warfdocs for web version 1.0 Copyright © 2006 Regents of the University of California; 2006 [cited 2010 July 5 2010]; [website]]. Available from: warfdocs.ucdavis.edu.

  52. Hamberg AK, Wadelius M, Pirmohamed M, Jonsson EN. Internal and external evaluation of a pharmacometric model for warfarin using prediction corrected visual predicitive check (PC-VPC). Population Approach Group Europe. Nineteenth meeting June 8–11 2010. http://www.page-meeting.org/pdf_assets/2122-Poster_PAGE2010_published.pdf; Berlin, Germany2010.

  53. Pitsiu M, Parker EM, Aarons L, Rowland M. Population pharmacokinetics and pharmacodynamics of warfarin in healthy-young adults. Eur J Pharm Sci. 1993;1(3):151–7.

    Article  CAS  Google Scholar 

  54. Horsti J, Uppa H, Vilpo JA. Poor agreement among prothrombin time international normalized ratio methods: comparison of seven commercial reagents. Clin Chem. 2005;51(3):553–60.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Professor Andrew McLachlan, Faculty of Pharmacy, University of Sydney, Australia, for access to the warfarin data set for external model evaluation. We thank Anna-Karin Hamberg, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden, for assistance with the published KPD warfarin model. At the time of writing, Dan Wright was the recipient of a University of Otago Postgraduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. B. Wright.

APPENDIX 1: THE OTAGO WARFARIN PKPD MODEL

APPENDIX 1: THE OTAGO WARFARIN PKPD MODEL

Methods

PKPD Modelling

A warfarin PKPD model was developed using data from the O’Reilly dataset. Population PK analysis was carried out with NONMEM VI using the first-order conditional estimation with interaction (FOCEI). One- and two-compartment pharmacokinetic models with first-order absorption were fitted to the warfarin concentration data. An absorption lag time (tlag) was also considered to help describe the apparent absorption delay of warfarin. Total body weight, sex and age were considered as covariates. These were retained in the model if inclusion decreased the objective function value by 3.84 or more (χ 2, p ≤ 0.05, d.f. = 1). Model discrimination and covariate inclusion were also assessed using graphical goodness-of-fit analysis. The between-subject variability was assumed to be log-normally distributed, with a mean of zero and a variance of ω2. Residual error was modelled using a combined additive and proportional error model.

Once the best PK model had been identified, a simultaneous PKPD model was developed. Graphical inspection of a PCA versus time plot overlayed on a concentration versus time plot suggested a considerable delay between warfarin response and dose. Therefore, only delayed effects models, such as effect compartment and inhibitory turnover (Imax) models, were considered. Candidate PKPD models were evaluated by comparison of the objective function values and by visual inspection of visual predictive checks (VPCs).

Internal and External Model Evaluation

The model was evaluated by simulating 1000 patients under the model and plotting the 10th, 50th, and 90th percentiles of the simulated PCA values. This was compared to the same percentiles from the O’Reilly dataset (VPCi) and the University of Sydney (VPCe).

Results

PKPD Modelling (The Otago Model)

Parameter and error model estimates for the final PKPD model are presented in Table III. A one-compartment pharmacokinetic model with first-order absorption and tlag provided the best fit for the data. Visual inspection of covariate plots suggested a relationship between CL, V and weight. A model for weight, standardised to 70 kg, was applied to clearance and volume. An allometric scaling function was also applied to clearance. The final model for clearance is given by

$$ CL = \mathop \theta \nolimits_{CL} *{\left( {\frac{{wt}}{{70}}} \right)^{0.75}} $$
(1)

and for volume by

$$ V = \mathop \theta \nolimits_V *\left( {\frac{{wt}}{{70}}} \right) $$
(2)

An inhibitory turnover model provided the best fit for the pharmacodynamic (PCA) data (see Eq. 3).

$$ \begin{array}{*{20}{c}} {\frac{{dPCA}}{t} = \left( {Rat{e_{in}}*IC} \right) - {k_{out}}*PCA} \hfill \\{IC = 1 - \frac{{\left( {IMAX*{C_p}} \right)}}{{\left( {EC50 - {C_p}} \right)}}} \hfill \\\end{array} . $$
(3)

where Ratein is the zero-order production rate for PCA, Kout is PCA elimination rate constant, Imax is the maximum inhibition of PCA, Cp is the plasma concentration (of warfarin), and EC50 is warfarin plasma concentration at 1/2 Imax.

Internal and External Evaluation of the Otago Model

An internal visual predictive check (VPCi) for warfarin response compared to the O’Reilly dataset is presented in the main body of the text (Fig. 1a). The plot suggests good model performance. An external evaluation (VPCe) of the model against the Sydney dataset is presented in the main body of the text (Fig. 2a). The model appears to under-predict anticoagulant response somewhat. This is discussed further in the main body of the paper.

Table 3 Warfarin PKPD Parameter Estimates for the final Otago Model

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, D.F.B., Duffull, S.B. Development of a Bayesian Forecasting Method for Warfarin Dose Individualisation. Pharm Res 28, 1100–1111 (2011). https://doi.org/10.1007/s11095-011-0369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0369-x

KEY WORDS

Navigation