Skip to main content

Advertisement

Log in

Subcutaneous Absorption of Monoclonal Antibodies: Role of Dose, Site of Injection, and Injection Volume on Rituximab Pharmacokinetics in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To determine the effect of dose, the anatomical site of injection, and the injection volume on subcutaneous absorption of rituximab in rats and to explore absorption mechanisms using pharmacokinetic modeling.

Methods

Rituximab serum concentrations were measured following intravenous and subcutaneous administration at the back, abdomen, and foot of rats. Several pharmacokinetic models were developed that included linear and saturable absorption, and degradation and/or protective binding at the injection site.

Results

Rituximab exhibited linear kinetics following intravenous administration; however, bioavailability following subcutaneous injection was inversely related to the dose level. For the 1 mg/kg dose, bioavailability was approximately 70% at all tested injection sites, with faster absorption from the foot (Tmax = 12 h for foot vs. 4.6 days for back). Bioavailability for the 10 mg/kg dose was 44 and 31% for the abdomen and back sites and 18% for 40 mg/kg injected at the back. A pharmacokinetic model that included binding as part of the absorption mechanism successfully captured the nonlinearities in rituximab absorption.

Conclusion

The anatomical site of subcutaneous injection influences the rate of absorption and bioavailability of rituximab in rats. Saturable binding may be a major determinant of the nonlinear absorptive transport of monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Roskos LK, Davis CG, Schwab GM. The clinical pharmacology of therapeutic monoclonal antibodies. Drug Develop Res. 2004;61:108–20.

    Article  CAS  Google Scholar 

  2. Lin JH. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies. Curr Drug Metab. 2009;10:661–91.

    Article  PubMed  CAS  Google Scholar 

  3. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharmaceut Sci. 2004;93:2645–68.

    Article  CAS  Google Scholar 

  4. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11:81–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ternantand D, Paintaud G. Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins. Expert Opin Biol Th. 2005;5:S37–47.

    Article  Google Scholar 

  6. Dayde D, Ternant D, Ohresser M, Lerondel S, Pesnel S, Watier H, et al. Tumor burden influences exposure and response to rituximab: pharmacokinetic-pharmacodynamic modeling using a syngeneic bioluminescent murine model expressing human CD20. Blood. 2009;113:3765–72.

    Article  PubMed  CAS  Google Scholar 

  7. Urva SR, Yang VC, Balthasar JP. Physiologically based pharmacokinetic model for T84.66: A monoclonal anti-CEA antibody. J Pharmaceut Sci. 2010;99:1582–600.

    Article  CAS  Google Scholar 

  8. Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93:2184–204.

    Article  PubMed  CAS  Google Scholar 

  9. Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89:297–310.

    Article  PubMed  CAS  Google Scholar 

  10. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49:633–59.

    Article  PubMed  CAS  Google Scholar 

  11. McLennan DN, Porter CJ, Edwards GA, Heatherington AC, Martin SW, Charman SA. The absorption of darbepoetin alfa occurs predominantly via the lymphatics following subcutaneous administration to sheep. Pharm Res. 2006;23:2060–6.

    Article  PubMed  CAS  Google Scholar 

  12. Porter CJ, Edwards GA, Charman SA. Lymphatic transport of proteins after s.c. injection: implications of animal model selection. Adv Drug Deliv Rev. 2001;50:157–71.

    Article  PubMed  CAS  Google Scholar 

  13. Charman SA, McLennan DN, Edwards GA, Porter CJ. Lymphatic absorption is a significant contributor to the subcutaneous bioavailability of insulin in a sheep model. Pharm Res. 2001;18:1620–6.

    Article  PubMed  CAS  Google Scholar 

  14. Kota J, Machavaram KK, McLennan DN, Edwards GA, Porter CJ, Charman SA. Lymphatic absorption of subcutaneously administered proteins: influence of different injection sites on the absorption of darbepoetin alfa using a sheep model. Drug Metab Dispos. 2007;35:2211–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kagan L, Gershkovich P, Mendelman A, Amsili S, Ezov N, Hoffman A. The role of the lymphatic system in subcutaneous absorption of macromolecules in the rat model. Eur J Pharm Biopharm. 2007;67:759–65.

    Article  PubMed  CAS  Google Scholar 

  16. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  PubMed  CAS  Google Scholar 

  17. Bocci V, Muscettola M, Grasso G, Magyar Z, Naldini A, Szabo G. The lymphatic route. 1) Albumin and hyaluronidase modify the normal distribution of interferon in lymph and plasma. Experientia. 1986;42:432–3.

    Article  PubMed  CAS  Google Scholar 

  18. Beshyah SA, Anyaoku V, Niththyananthan R, Sharp P, Johnston DG. The effect of subcutaneous injection site on absorption of human growth hormone: abdomen versus thigh. Clin Endocrinol (Oxf). 1991;35:409–12.

    Article  CAS  Google Scholar 

  19. Macdougall IC, Jones JM, Robinson MI, Miles JB, Coles GA, Williams JD. Subcutaneous erythropoietin therapy: comparison of three different sites of injection. Contrib Nephrol. 1991;88:152–6. discussion 157–158.

    PubMed  CAS  Google Scholar 

  20. Ter Braak E, Woodworth J, Bianchi R, Cerimele B, Erkelens D, Thijssen J, et al. Injection site effects on the pharmacokinetics and glucodynamics of insulin lispro and regular insulin. Diabetes Care. 1996;19:1437–40.

    Article  PubMed  Google Scholar 

  21. Oussoren C, Zuidema J, Crommelin DJA, Storm G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection I. Influence of the anatomical site of injection. J Liposome Res. 1997;7:85–99.

    Article  Google Scholar 

  22. Lee VH. Enzymatic barriers to peptide and protein absorption. Crit Rev Ther Drug Carrier Syst. 1988;5:69–97.

    PubMed  CAS  Google Scholar 

  23. Parsons JA, Rafferty B, Stevenson RW, Zanelli JM. Evidence that protease inhibitors reduce the degradation of parathyroid hormone and calcitonin injected subcutaneously. Br J Pharmacol. 1979;66:25–32.

    PubMed  CAS  Google Scholar 

  24. Mager DE, Neuteboom B, Efthymiopoulos C, Munafo A, Jusko WJ. Receptor-mediated pharmacokinetics and pharmacodynamics of interferon-beta1a in monkeys. J Pharmacol Exp Ther. 2003;306:262–70.

    Article  PubMed  CAS  Google Scholar 

  25. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–45.

    PubMed  CAS  Google Scholar 

  26. Plosker GL, Figgitt DP. Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs. 2003;63:803–43.

    Article  PubMed  CAS  Google Scholar 

  27. Davis CB, Bugelski PJ. Subcutaneous bioavailability of a PRIMATIZED IgG1 anti-human CD4 monoclonal antibody is dose dependent in transgenic mice bearing human CD4. Drug Deliv. 1998;5:95–100.

    Article  PubMed  CAS  Google Scholar 

  28. Beum PV, Kennedy AD, Taylor RP. Three new assays for rituximab based on its immunological activity or antigenic properties: analyses of sera and plasmas of RTX-treated patients with chronic lymphocytic leukemia and other B cell lymphomas. J Immunol Methods. 2004;289:97–109.

    Article  PubMed  CAS  Google Scholar 

  29. Blasco H, Lalmanach G, Godat E, Maurel MC, Canepa S, Belghazi M, et al. Evaluation of a peptide ELISA for the detection of rituximab in serum. J Immunol Methods. 2007;325:127–39.

    Article  PubMed  CAS  Google Scholar 

  30. DeSilva B, Smith W, Weiner R, Kelley M, Smolec J, Lee B, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res. 2003;20:1885–900.

    Article  PubMed  CAS  Google Scholar 

  31. Findlay JW, Dillard RF. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 2007;9:E260–7.

    Article  PubMed  Google Scholar 

  32. Ober RJ, Martinez C, Vaccaro C, Zhou J, Ward ES. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol. 2004;172:2021–9.

    PubMed  CAS  Google Scholar 

  33. Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34:687–709.

    Article  PubMed  CAS  Google Scholar 

  34. Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev. 2001;50:3–20.

    Article  PubMed  CAS  Google Scholar 

  35. McLennan DN, Porter CJH, Charman SA. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov Today: Tech. 2005;2:89–96.

    Article  CAS  Google Scholar 

  36. Weinstein JN, Parker RJ, Keenan AM, Dower SK, Morse 3rd HC, Sieber SM. Monoclonal anitbodies in the lymphatics: toward the diagnosis and therapy of tumor metastases. Science. 1982;218:1334–7.

    Article  PubMed  CAS  Google Scholar 

  37. Steller MA, Parker RJ, Covell DG, Holton 3rd OD, Keenan AM, Sieber SM, et al. Optimization of monoclonal antibody delivery via the lymphatics: the dose dependence. Cancer Res. 1986;46:1830–4.

    PubMed  CAS  Google Scholar 

  38. Harrell MI, Iritani BM, Ruddell A. Lymph node mapping in the mouse. J Immunol Meth. 2008;332:170–4.

    Article  CAS  Google Scholar 

  39. Raghavan M, Bjorkman PJ. Fc receptors and their interactions with immunoglobulins. Annu Rev Cell Dev Biol. 1996;12:181–220.

    Article  PubMed  CAS  Google Scholar 

  40. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol. 1996;26:690–6.

    Article  PubMed  CAS  Google Scholar 

  41. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A. 1996;93:5512–6.

    Article  PubMed  CAS  Google Scholar 

  42. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84:548–58.

    Article  PubMed  CAS  Google Scholar 

  43. Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest. 1999;104:903–11.

    Article  PubMed  CAS  Google Scholar 

  44. Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol. 2001;62:93–105.

    Article  PubMed  CAS  Google Scholar 

  45. Hansen RJ, Balthasar JP. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci. 2003;92:1206–15.

    Article  PubMed  CAS  Google Scholar 

  46. Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22:1589–96.

    Article  PubMed  CAS  Google Scholar 

  47. Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13:1551–9.

    Article  PubMed  CAS  Google Scholar 

  48. McDonald TA, Zepeda ML, Tomlinson MJ, Bee WH, Ivens IA. Subcutaneous administration of biotherapeutics: current experience in animal models. Curr Opin Mol Ther. 2010;12:461–70.

    PubMed  CAS  Google Scholar 

  49. Xu Z, Wang Q, Zhuang Y, Frederick B, Yan H, Bouman-Thio E, et al. Subcutaneous bioavailability of golimumab at 3 different injection sites in healthy subjects. J Clin Pharmacol. 2010;50:276–84.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We thank Dr. John M. Harrold for his help in developing the MATLAB code for this project. Partial results of this study were presented at the 12th Buffalo Pharmaceutics Symposium in Buffalo, NY. This work was supported by the Center for Protein Therapeutics, University at Buffalo, SUNY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Kagan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, L., Turner, M.R., Balu-Iyer, S.V. et al. Subcutaneous Absorption of Monoclonal Antibodies: Role of Dose, Site of Injection, and Injection Volume on Rituximab Pharmacokinetics in Rats. Pharm Res 29, 490–499 (2012). https://doi.org/10.1007/s11095-011-0578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0578-3

KEY WORDS

Navigation