Skip to main content

Advertisement

Log in

Mechanistic Understanding of Brain Drug Disposition to Optimize the Selection of Potential Neurotherapeutics in Drug Discovery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The current project was undertaken with the aim to propose and test an in-depth integrative analysis of neuropharmacokinetic (neuroPK) properties of new chemical entities (NCEs), thereby optimizing the routine of evaluation and selection of novel neurotherapeutics.

Methods

Forty compounds covering a wide range of physicochemical properties and various CNS targets were investigated. The combinatory mapping approach was used for the assessment of the extent of blood-brain and cellular barriers transport via estimation of unbound-compound brain (Kp,uu,brain) and cell (Kp,uu,cell) partitioning coefficients. Intra-brain distribution was evaluated using the brain slice method. Intra- and sub-cellular distribution was estimated via calculation of unbound-drug cytosolic and lysosomal partitioning coefficients.

Results

Assessment of Kp,uu,brain revealed extensive variability in the brain penetration properties across compounds, with a prevalence of compounds actively effluxed at the blood-brain barrier. Kp,uu,cell was valuable for identification of compounds with a tendency to accumulate intracellularly. Prediction of cytosolic and lysosomal partitioning provided insight into the subcellular accumulation. Integration of the neuroPK parameters with pharmacodynamic readouts demonstrated the value of the proposed approach in the evaluation of target engagement and NCE selection.

Conclusions

With the rather easily-performed combinatory mapping approach, it was possible to provide quantitative information supporting the decision making in the drug discovery setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Abrain :

Amount of drug in brain tissue

AUC0−t :

Area under the drug concentration-time curve from zero to t, where t is the last time point with a measurable concentration for an individual dose

AUCtot,brain :

Area under the total drug brain concentration-time curve

AUCtot,plasma :

Area under the total drug plasma concentration-time curve

BBB:

Blood-brain barrier

BCRP:

Breast cancer resistance-associated protein

BCSFB:

Blood-CSF barrier

CB:

Cellular barrier

Cbuffer :

Concentration of compound in the buffer (brain slice method)

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

Ctot,brain :

Total drug concentration in brain

Ctot,plasma :

Total drug concentration in plasma

Cu,brainISF :

Unbound-drug concentration in brain interstitial fluid

Cu,plasma :

Unbound-drug concentration in plasma

ECF:

Extracellular fluid (same as ISF)

ED:

Equilibrium dialysis

fu,brain :

Unbound fraction of drug in brain homogenate

fu,brain,corrected :

Unbound fraction of drug in brain homogenate after applying the correction using the pH partitioning model

fu,hD :

Unbound fraction of drug in diluted brain homogenate

fu,plasma :

Unbound fraction of drug in plasma

ICF:

Intracellular fluid in the brain

ISF:

Interstitial fluid in the brain (same as ECF)

Kp,brain :

Ratio of total brain to total plasma drug concentrations (general annotation)

Kp,brainSD :

Ratio of total brain to total plasma drug concentrations measured after single dose administration

Kp,brainSS :

Ratio of total brain to total plasma drug concentrations at steady-state

Kp,CSF :

Ratio of total plasma to total CSF drug concentrations

Kp,uu,brain :

Ratio of brain ISF to plasma unbound-drug concentrations

Kp,uu,cell :

Ratio of brain ICF to ISF unbound-drug concentrations

Kp,uu,cell,obs :

Kp,uu,cell determined using the combination of brain slice and brain homogenate methods

Kp,uu,cell,pred :

Kp,uu,cell predicted using the three-compartment pH partitioning model

Kp,uu,CSF :

Ratio of plasma to CSF unbound-drug concentrations

Kp,uu,cyto,pred :

Ratio of cytosolic to extracellular unbound-drug concentrations predicted from the pH partitioning model

Kp,uu,lyso,pred :

Ratio of lysosomic to cytosolic unbound-drug concentrations predicted from the pH partitioning model

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

NCE:

New chemical entity

neuroPK:

Neuropharmacokinetics

P-gp:

P-glycoprotein

Vu,brain :

Volume of distribution of unbound-drug in brain (mL·g brain-1)

REFERENCES

  1. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–19.

    Article  CAS  PubMed  Google Scholar 

  2. Hammarlund-Udenaes M. Active-site concentrations of chemicals—are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol. 2010;106(3):215–20.

    Article  CAS  PubMed  Google Scholar 

  3. DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87(3):272–7.

    Article  CAS  PubMed  Google Scholar 

  4. Brunner D, Balci F, Ludvig EA. Comparative psychology and the grand challenge of drug discovery in psychiatry and neurodegeneration. Behav Processes. 2012;89(2):187–95.

    Article  PubMed  Google Scholar 

  5. Kaitin KI, DiMasi JA. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin Pharmacol Ther. 2011;89(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP. Knowledge-based, Central Nervous System (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3(1):50–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Reichel A. The role of blood-brain barrier studies in the pharmaceutical industry. Curr Drug Metab. 2006;7(2):183–203.

    Article  CAS  PubMed  Google Scholar 

  8. Di L, Rong H, Feng B. Demystifying brain penetration in central nervous system drug discovery. J Med Chem. 2012;56:2–12.

    Article  PubMed  Google Scholar 

  9. Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Liu X, Chen C, Smith BJ. Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther. 2008;325(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  11. Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today. 2012;17(9–10):419–24.

    Article  CAS  PubMed  Google Scholar 

  12. Bundgaard C, Sveigaard C, Brennum LT, Stensbol TB. Associating in vitro target binding and in vivo CNS occupancy of serotonin reuptake inhibitors in rats: the role of free drug concentrations. Xenobiotica. 2012;42(3):256–65.

    Article  PubMed  Google Scholar 

  13. Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M. In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos. 2007;35(9):1711–9.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M. Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p, u), and K(p, uu). Drug Metab Dispos. 2006;34(2):318–23.

    Article  CAS  PubMed  Google Scholar 

  15. Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM. Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50, u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther. 2007;323(1):346–55.

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Vilenski O, Kwan J, Apparsundaram S, Weikert R. Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds in rats. Drug Metab Dispos. 2009;37(7):1548–56.

    Article  CAS  PubMed  Google Scholar 

  17. Read KD, Braggio S. Assessing brain free fraction in early drug discovery. Expert Opin Drug Metab Toxicol. 2010;6(3):337–44.

    Article  CAS  PubMed  Google Scholar 

  18. Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, et al. Receptor occupancy and brain free fraction. Drug Metab Dispos. 2009;37(4):753–60.

    Article  CAS  PubMed  Google Scholar 

  19. Kalvass JC, Maurer TS. Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos. 2002;23(8):327–38.

    Article  CAS  PubMed  Google Scholar 

  20. Jeffrey P, Summerfield SG. Challenges for blood-brain barrier (BBB) screening. Xenobiotica. 2007;37(10–11):1135–51.

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Van Natta K, Yeo H, Vilenski O, Weller PE, Worboys PD, et al. Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab Dispos. 2009;37(4):787–93.

    Article  CAS  PubMed  Google Scholar 

  22. Hammarlund-Udenaes M, Bredberg U, Friden M. Methodologies to assess brain drug delivery in lead optimization. Curr Top Med Chem. 2009;9(2):148–62.

    Article  CAS  PubMed  Google Scholar 

  23. Friden M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M. Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos. 2009;37(6):1226–33.

    Article  CAS  PubMed  Google Scholar 

  24. Loryan I, Friden M, Hammarlund-Udenaes M. The brain slice method for studying drug distribution in the CNS. Fluids Barriers CNS. 2013;10(1):6.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, et al. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos. 2011;39(3):353–62.

    Article  CAS  PubMed  Google Scholar 

  26. Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, et al. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology. 2004;47(7):1081–92.

    Article  CAS  PubMed  Google Scholar 

  27. May PC, Dean RA, Lowe SL, Martenyi F, Sheehan SM, Boggs LN, et al. Robust central reduction of amyloid-beta in humans with an orally available, non-peptidic beta-secretase inhibitor. J Neurosci. 2011;31(46):16507–16.

    Article  CAS  PubMed  Google Scholar 

  28. van Liempd S, Morrison D, Sysmans L, Nelis P, Mortishire-Smith R. Development and validation of a higher-throughput equilibrium dialysis assay for plasma protein binding. J Lab Autom. 2011;16(1):56–67.

    Article  PubMed  Google Scholar 

  29. Wan H, Rehngren M, Giordanetto F, Bergstrom F, Tunek A. High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem. 2007;50(19):4606–15.

    Article  CAS  PubMed  Google Scholar 

  30. Kurz H, Fichtl B. Binding of drugs to tissues. Drug Metab Rev. 1983;14(3):467–510.

    Article  CAS  PubMed  Google Scholar 

  31. Friden M, Ljungqvist H, Middleton B, Bredberg U, Hammarlund-Udenaes M. Improved measurement of drug exposure in the brain using drug-specific correction for residual blood. J Cereb Blood Flow Metab. 2010;30(1):150–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nicholson C, Sykova E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998;21(5):207–15.

    Article  CAS  PubMed  Google Scholar 

  33. Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2(4):541–53.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bendayan R, Ronaldson PT, Gingras D, Bendayan M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem. 2006;54(10):1159–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ronaldson PT, Bendayan M, Gingras D, Piquette-Miller M, Bendayan R. Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. J Neurochem. 2004;89(3):788–800.

    Article  CAS  PubMed  Google Scholar 

  36. Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev. 2006;58(2):140–61.

    Article  CAS  PubMed  Google Scholar 

  37. Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96(4):729–46.

    Article  CAS  PubMed  Google Scholar 

  38. Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001;53(4):569–96.

    Article  CAS  PubMed  Google Scholar 

  39. Duvvuri M, Krise JP. A novel assay reveals that weakly basic model compounds concentrate in lysosomes to an extent greater than pH-partitioning theory would predict. Mol Pharm. 2005;2(6):440–8.

    Article  CAS  PubMed  Google Scholar 

  40. Funk RS, Krise JP. Cationic amphiphilic drugs cause a marked expansion of apparent lysosomal volume: implications for an intracellular distribution-based drug interaction. Mol Pharm. 2012;9(5):1384–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Logan R, Funk RS, Axcell E, Krise JP. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications. Expert Opin Drug Metab Toxicol. 2012;8(8):943–58.

    Article  CAS  PubMed  Google Scholar 

  42. Friden M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, et al. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem. 2009;52(20):6233–43.

    Article  CAS  PubMed  Google Scholar 

  43. Lin JH. CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr Drug Metab. 2008;9(1):46–59.

    Article  CAS  PubMed  Google Scholar 

  44. Shen DD, Artru AA, Adkison KK. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev. 2004;56(12):1825–57.

    Article  CAS  PubMed  Google Scholar 

  45. de Lange EC. Utility of CSF in translational neuroscience. J Pharmacokinet Pharmacodyn. 2013;40:315–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gazzin S, Berengeno AL, Strazielle N, Fazzari F, Raseni A, Ostrow JD, et al. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the gunn rat. PLoS ONE. 2011;6(1):e16165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Reichel A. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers. 2009;6(11):2030–49.

    Article  CAS  PubMed  Google Scholar 

  48. Shaffer CL. Defining neuropharmacokinetic parameters in CNS drug discovery to determine cross-species pharmacologic exposure-response relationships. Annu Rep Med Chem. 2010;45:55–70.

    Article  CAS  Google Scholar 

  49. Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev. 2003;55(3):425–61.

    Article  CAS  PubMed  Google Scholar 

  50. Raub TJL BS, Andrus PK, Sawada GA, Staton BA. Early preclinical evaluation of brain exposure in support of hit identification and lead optimization. Optimization of drug-like properties during lead optimization. In: Borchardt RT, Middagh CR, editors. Biotechnology: Pharmaceutical aspects series. Arlington: Am Assoc Pharm Sci Press; 2006. 5.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We express our sincere thanks to Koen Wuyts and the Early Drug Developability in vivo Group, Janssen Pharmaceutica for performing the neuropharmacokinetic studies and providing the Kp,brain values. We also gratefully acknowledge the excellent assistance of Britt Jansson (Uppsala University) and Lieve Dillen, Dirk Roelant, Suzy Geerinckx (BA/DMPK, Janssen Pharmaceutica) with the bioanalysis. During the project, Irena Loryan was funded by Janssen Pharmaceutica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareta Hammarlund-Udenaes.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 56 kb)

Figure S1

A. The relationship between the ratios of total brain to total plasma drug concentrations determined at distributional equilibrium (Kp,brainSD) and at steady-state (Kp,brainSS). B. Residual plot. The solid line represents the line of identity. (JPEG 1410 kb)

Figure S2

The relationship between the ratio of brain interstitial fluid to plasma unbound-compound concentrations (Kp,uu,brain) and the ratio of cerebrospinal fluid to plasma unbound-compound concentrations (Kp,uu,CSF). R2 is a coefficient of determination of linear regression analysis. The solid line represents the line of identity. (JPEG 1351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loryan, I., Sinha, V., Mackie, C. et al. Mechanistic Understanding of Brain Drug Disposition to Optimize the Selection of Potential Neurotherapeutics in Drug Discovery. Pharm Res 31, 2203–2219 (2014). https://doi.org/10.1007/s11095-014-1319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1319-1

KEY WORDS

Navigation