Skip to main content

Advertisement

Log in

Chitosan-Based Hybrid Nanocomplex for siRNA Delivery and Its Application for Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Chitosan, a natural and biocompatible cationic polymer, is an attractive carrier for small interfering RNA (siRNA) delivery. The purpose of this study was to develop a chitosan-based hybrid nanocomplex that exhibits enhanced physical stability in the bloodstream compared with conventional chitosan complexes. Hybrid nanocomplexes composed of chitosan, protamine, lecithin, and thiamine pyrophosphate were prepared for systemic delivery of survivin (SVN) siRNA.

Methods

Physicochemical properties of the nanoparticles including mean diameters and zeta potentials were characterized, and target gene silencing and cellular uptake efficiencies of the siRNA nanocomplexes in prostate cancer cells (PC-3 cells) were measured. In vivo tumor targetability and anti-tumor efficacy by systemic administration were assessed in a PC-3 tumor xenograft mouse model by near-infrared fluorescence (NIRF) imaging and tumor growth monitoring, respectively.

Results

Mean diameters of the SVN siRNA-loaded hybrid nanocomplex (GP-L-CT) were less than 200 nm with a positive zeta potential value in water and were maintained without aggregation in culture media and 50% fetal bovine serum. SVN expression in PC-3 cells was reduced to 21.9% after treating with GP-L-CT. The tumor targetability and growth inhibitory efficacies of GP-L-CT supported the use of this novel hybrid nanocomplex as a cancer therapeutic and as a theranostic system for systemic administration.

Conclusions

A chitosan-based hybrid nanocomplex was successfully developed for the systemic delivery of SVN siRNA, which could serve as an alternative to cationic polymeric nanoparticles that are unstable in serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Cryo-TEM:

Cryo-transmission electron microscopy

EPR:

Enhanced permeability and retention

NIRF:

Near-infrared fluorescence

RNAi:

RNA interference

SCID:

Severe combined immunodeficiency

siRNA:

Small interfering ribonucleic acid

TPP:

Thiamine pyrophosphate

References

  1. Davaa E, Ahn IH, Kang BS, Lee SE, Myung CS, Park JS. Preliminary study to determine the optimal conditions for the simultaneous complexation of siRNA and plasmid DNA. J Pharm Invest. 2013;43:499–505.

    Article  CAS  Google Scholar 

  2. Wang J, Lu Z, Wientjes MG, Au JL-S. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12:492–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther. 2006;13:644–70.

    Article  CAS  PubMed  Google Scholar 

  4. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S, Zhao Y, Zhi D, Zhang S. Non-viral vectors for the mediation of RNAi. Bioorg Chem. 2012;40:10–8.

    Article  PubMed  Google Scholar 

  6. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58:32–45.

    Article  CAS  PubMed  Google Scholar 

  7. Ping Y, Liu C, Zhang Z, Liu KL, Chen J, Li J. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials. 2011;32:8328–41.

    Article  CAS  PubMed  Google Scholar 

  8. Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic Acid Ther. 2011;21:133–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12–27.

    Article  CAS  PubMed  Google Scholar 

  10. Malmo J, Hanne S, Vårum KM, Strand SP. SiRNA delivery with chitosan nanoparticles: molecular properties favoring efficient gene silencing. J Control Release. 2012;158:261–8.

    Article  CAS  PubMed  Google Scholar 

  11. Techaarpornkul S, Wongkupasert S, Opanasopit P, Apirakaramwong A, Nunthanid J, Ruktanonchai U. Chitosan-mediated siRNA delivery in vitro: effect of polymer molecular weight, concentration and salt forms. AAPS PharmSciTech. 2010;11:64–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Park S, Jeong EJ, Lee J, Rhim T, Lee SK, Lee KY. Preparation and characterization of nonaarginine-modified chitosan nanoparticles for siRNA delivery. Carbohydr Polym. 2013;92:57–62.

    Article  CAS  PubMed  Google Scholar 

  13. Fernandes JC, Qiu X, Winnik FM, Benderdour M, Zhang X, Dai K, et al. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies. Int J Nanomedicine. 2012;7:5833–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Malhotra M, Tomaro-Duchesneau C, Prakash S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials. 2013;34:1270–80.

    Article  CAS  PubMed  Google Scholar 

  15. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res. 2010;16:3910–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Malhotra M, Lane C, Tomaro-Duchesneau C, Saha S, Prakash S. A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis. Int J Nanomedicine. 2011;6:485–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Karmali PP, Simberg D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv. 2011;8:343–57.

    Article  CAS  PubMed  Google Scholar 

  18. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146:882–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5:487–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Matsuura M, Yamazake Y, Sugiyama M, Kondo M, Ori H, Nango M, et al. Polycation liposome-mediated gene transfer in vivo. Biochim Biophys Acta. 2003;1612:136–43.

    Article  CAS  PubMed  Google Scholar 

  21. Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172:207–18.

    Article  CAS  PubMed  Google Scholar 

  22. Xu S, Dong M, Liu X, Howard KA, Kjems J, Besenbacher F. Direct force measurements between siRNA and chitosan molecules using force spectroscopy. Biophys J. 2007;93:952–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Doolittle H, Morel A, Talbot D. Survivin-directed anticancer therapies – A review of pre-clinical data and early-phase clinical trials. Eur Oncol. 2010;6:10–4.

    Google Scholar 

  24. Kundu AK, Chandra PK, Hazari S, Pramar YV, Dash S, Mandal TK. Development and optimization of nanosomal formulations for siRNA delivery to the liver. Eur J Pharm Biopharm. 2012;80:257–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Delgado D, Pozo- Rodríguez A, Solinís MA, Rodríguez-Gascón A. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: The importance of the entry pathway. Eur J Pharm Biopharm. 2011;79:495–502.

    Article  CAS  PubMed  Google Scholar 

  26. DeLong RK, Akhtar U, Sallee M, Parker B, Barber S, Zhang J, et al. Characterization and performance of nucleic acid nanoparticles combined with protamine and gold. Biomaterials. 2009;30:6451–9.

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Huang L. In vivo gene transfer via intravenous administration of cationic lipid–protamine–DNA (LPD) complexes. Gene Ther. 1997;4:891–900.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan H, Zhang W, Du Y, Hu F. Ternary nanoparticles of anionic lipid nanoparticles/protamine/DNA for gene delivery. Int J Pharm. 2010;392:224–31.

    Article  CAS  PubMed  Google Scholar 

  29. Rojanarata T, Opanasopit P, Techaarpornkul S, Ngawhirunpat T, Ruktanonchai U. Chitosan-thiamine pyrophosphate as a novel carrier for siRNA delivery. Pharm Res. 2008;25:2807–14.

    Article  CAS  PubMed  Google Scholar 

  30. Crawford R, Dogdas B, Keough E, Haas RM, Wepukhulu W, Krotzer S, et al. Analysis of lipid nanoparticles by Cryo-EM for characterizing siRNA delivery vehicles. Int J Pharm. 2011;403:237–44.

    Article  CAS  PubMed  Google Scholar 

  31. Mayen V, Wutikhun T, Ketchart O, Kopermsub P. Adsorption of siRNA into mesoporous silica nanoparticles. J Microsc Soc Thai. 2012;5:10–3.

    Google Scholar 

  32. Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Lee JH, et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials. 2011;31:7181–90.

    Article  Google Scholar 

  33. Kalsin AM, Kowalczyk B, Smoukov SK, Klajn R, Grzybowski BA. Ionic-like behavior of oppositely charged nanoparticles. J Am Chem Soc. 2006;128:15046–7.

    Article  CAS  PubMed  Google Scholar 

  34. Suh MS, Shim G, Lee YH, Han SE, Yu YH, Choi Y, et al. Anionic amino acid-derived cationic lipid for siRNA delivery. J Control Release. 2009;140:268–76.

    Article  CAS  PubMed  Google Scholar 

  35. Sternberg B, Hong K, Zheng W, Papahadjopoulos D. Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim Biophys Acta. 1998;1375:23–35.

    Article  CAS  PubMed  Google Scholar 

  36. Han SE, Kang H, Shim GY, Suh MS, Kim SJ, Kim JS, et al. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int J Pharm. 2008;353:260–9.

    CAS  PubMed  Google Scholar 

  37. Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 2009;6:685–95.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the Ministry of Knowledge Economy of Korea (10030044, SM. Noh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Duk Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ki, MH., Kim, JE., Lee, YN. et al. Chitosan-Based Hybrid Nanocomplex for siRNA Delivery and Its Application for Cancer Therapy. Pharm Res 31, 3323–3334 (2014). https://doi.org/10.1007/s11095-014-1422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1422-3

KEY WORDS

Navigation