Skip to main content
Log in

miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

miRDeepFinder is a software package developed to identify and functionally analyze plant microRNAs (miRNAs) and their targets from small RNA datasets obtained from deep sequencing. The functions available in miRDeepFinder include pre-processing of raw data, identifying conserved miRNAs, mining and classifying novel miRNAs, miRNA expression profiling, predicting miRNA targets, and gene pathway and gene network analysis involving miRNAs. The fundamental design of miRDeepFinder is based on miRNA biogenesis, miRNA-mediated gene regulation and target recognition, such as perfect or near perfect hairpin structures, different read abundances of miRNA and miRNA*, and targeting patterns of plant miRNAs. To test the accuracy and robustness of miRDeepFinder, we analyzed a small RNA deep sequencing dataset of Arabidopsis thaliana published in the GEO database of NCBI. Our test retrieved 128 of 131 (97.7%) known miRNAs that have a more than 3 read count in Arabidopsis. Because many known miRNAs are not associated with miRNA*s in small RNA datasets, miRDeepFinder was also designed to recover miRNA candidates without the presence of miRNA*. To mine as many miRNAs as possible, miRDeepFinder allows users to compare mature miRNAs and their miRNA*s with other small RNA datasets from the same species. Cleaveland software package was also incorporated into miRDeepFinder for miRNA target identification using degradome sequencing analysis. Using this new computational tool, we identified 13 novel miRNA candidates with miRNA*s from Arabidopsis and validated 12 of them experimentally. Interestingly, of the 12 verified novel miRNAs, a miRNA named AC1 spans the exons of two genes (UTG71C4 and UGT71C3). Both the mature AC1 miRNA and its miRNA* were also found in four other small RNA datasets. We also developed a tool, “miRNA primer designer” to design primers for any type of miRNAs. miRDeepFinder provides a powerful tool for analyzing small RNA datasets from all species, with or without the availability of genome information. miRDeepFinder and miRNA primer designer are freely available at http://www.leonxie.com/DeepFinder.php and at http://www.leonxie.com/miRNAprimerDesigner.php, respectively. A program (called RefFinder: http://www.leonxie.com/referencegene.php) was also developed for assessing the reliable reference genes for gene expression analysis, including miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2008) MicroRNA metabolism in plants. Curr Top Microbiol Immunol 320:117–136

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Ender C, Meister G (2010) Argonaute proteins at a glance. J Cell Sci 123:1819–1823

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PloS one 2:e219

    Article  PubMed  Google Scholar 

  • Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415

    Article  PubMed  Google Scholar 

  • Fu H, Tie Y, Xu C, Zhang Z, Zhu J, Shi Y, Jiang H, Sun Z, Zheng X (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Lett 579:3849–3854

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  PubMed  CAS  Google Scholar 

  • Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140

    Article  PubMed  CAS  Google Scholar 

  • Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J (2003) Computational and experimental identification of C. elegans microRNAs. Mol Cell 11:1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ (2005) Pathways through the small RNA world of plants. FEBS Lett 579:5879–5888

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  PubMed  CAS  Google Scholar 

  • Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed  Google Scholar 

  • Huang PJ, Liu YC, Lee CC, Lin WC, Gan RR, Lyu PC, Tang P (2010) DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 38(Suppl):W385–W391

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Natl Rev Mol Cell Biol 6:376–385

    Article  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Mathelier A, Carbone A (2010) MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26:2226–2234

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Moxon S, Schwach F, Dalmay T, Maclean D, Studholme DJ, Moulton V (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24:2252–2253

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Lagos-Quintana M, Tuschl T (2005) Cloning of small RNA molecules. Curr Protoc Mol Biol Chapter 26, Unit 26 24

  • Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed  Google Scholar 

  • Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS (2009) miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 10:328

    Article  PubMed  Google Scholar 

  • Xie F, Zhang B (2010) Target-align: a tool for plant microRNA target identification. Bioinformatics 26:3002–3003

    Article  PubMed  CAS  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474

    Article  PubMed  CAS  Google Scholar 

  • Xie F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232:417–434

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, Du L, Zhang YP, Jiang W, Li CQ, Xiao Y, Li X (2011) MiRNA–miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 39:825–836

    Google Scholar 

  • Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33:W701–W704

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  PubMed  CAS  Google Scholar 

  • Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X, Sun Z, Wu J (2010) mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res 38(Suppl):W392–W397

    Article  PubMed  CAS  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate Dr. John Stiller for his critical comments, suggestions and editing on this manuscript. This project is partially support by the grants from NCBC, the Cotton Incorporated and USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary 1: 13 newly identified miRNAs from Arabidopsis small RNA dataset Supplementary material 1 (XLS 757 kb)

11103_2012_9885_MOESM2_ESM.xls

Supplementary 2: miRDeepFinder identified miRNAs and their reads from the deep sequencing datasets Supplementary material 2 (XLS 378 kb)

Supplementary 3: miRDeepFinder identified miRNAs and their targets Supplementary material 3 (XLS 1143 kb)

Supplementary 4: GO analysis Supplementary material 4 (XLS 699 kb)

Supplementary 5: KEGG analysis Supplementary material 5 (XLS 44 kb)

11103_2012_9885_MOESM6_ESM.txt

Supplementary 6: A total of 631 reads were identified as conserved miRNAs corresponding to 182 distinct miRNAs Supplementary material 6 (TXT 1779 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, F., Xiao, P., Chen, D. et al. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80, 75–84 (2012). https://doi.org/10.1007/s11103-012-9885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9885-2

Keywords

Navigation