Skip to main content
Log in

Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Soybean is highly sensitive to flooding stress and exhibits markedly reduced plant growth and grain yield under flooding conditions. To explore the mechanisms underlying initial flooding tolerance in soybean, RNA sequencing-based transcriptomic analysis was performed using a flooding-tolerant line and ABA-treated soybean. A total of 31 genes included 12 genes that exhibited similar temporal patterns were commonly changed in these plant groups in response to flooding and they were mainly involved in RNA regulation and protein metabolism. The mRNA expression of matrix metalloproteinase, glucose-6-phosphate isomerase, ATPase family AAA domain-containing protein 1, and cytochrome P450 77A1 was up-regulated in wild-type soybean under flooding conditions; however, no changes were detected in the flooding-tolerant line or ABA-treated soybean. The mRNA expression of cytochrome P450 77A1 was specifically up-regulated in root tips by flooding stress, but returned to the level found in control plants following treatment with the P450 inhibitor uniconazole. The survival ratio and root fresh weight of plants were markedly improved by 3-h uniconazole treatment under flooding stress. Taken together, these results suggest that cytochrome P450 77A1 is suppressed by uniconazole treatment and that this inhibition may enhance soybean tolerance to flooding stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

ABA:

Abscisic acid

FPKM:

Fragments per kilobase exon per million reads mapped

References

  • Asami T, Mizutani M, Fujioka S, Goda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroids biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem 276:25687–25691

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  • Baek K, Seo PJ, Park CM (2011) Activation of a mitochondrial ATPase gene induces abnormal seed development in Arabidopsis. Mol Cells 31:361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D (2011) Cytochromes P450. Arabidopsis Book 9:e0144

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bolwell GP, Bozak K, Zimmerlin A (1994) Plant cytochrome P450. Phytochemistry 37:1491–1506

    Article  CAS  PubMed  Google Scholar 

  • Burden RS, Carter GA, Clark T, Cooke DT, Croker SJ, Deas AHB, Hedden P, James CS, Lenton JR (1987) Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis. Pesticide Sci 21: 253–267

    Article  CAS  Google Scholar 

  • Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQfile format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucl Acids Res 38:1767–1771

    Article  CAS  PubMed  Google Scholar 

  • Day L (2013) Proteins from land plants-potential resources for human nutrition and food security. Trends Food Sci Technol 32:25–42

    Article  CAS  Google Scholar 

  • Delorme VGR, McCabe PF, Kim DJ, Leaver CJ (2000) A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol 123:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metabol Drug Interact 12:189–206

    CAS  PubMed  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2013) Deep transcriptome sequencing of wild halophyte rice, porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 42:1–6

    Google Scholar 

  • Guttikonda SK, Trupti J, Bisht NC, Chen H, An YQC, Pandey S, Xu D, Yu O (2010) Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases. BMC Plant Biol 10:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161:1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30: 142–150

    Article  CAS  PubMed  Google Scholar 

  • Kitahata N, Saito S, Miyazawa Y, Umezawa T, Shimada Y, Min YK, Mizutani M, Hirai N, Shinozaki K, Yoshida S, Asami T (2005) Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorg Med Chem 13:4491–4498

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 8:4766–4778

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Kobayashi Y, Nishizawa K, Nanjo Y, Furukawa K (2010) Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39:1435–1449

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Nanjo Y, Nishimura M (2013a) Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteom 79:231–250

  • Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P (2013b) Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 12:4769–4784

  • Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops: a proteomic perspective. Int J Mol Sci 16:20913–20942

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:1

    Article  Google Scholar 

  • Lopez-Molina L, Mongrand S, Kinoshita N, Chua, NH (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Gen Dev 17:410–418

    Article  CAS  Google Scholar 

  • Lorković ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  PubMed  Google Scholar 

  • Maidment JM, Moore D, Murphy GP, Murphy G, Clark IM (1999) Matrix metalloproteinase homologues from Arabidopsis thaliana expression and activity. J Biol Chem 274:34706–34710

    Article  CAS  PubMed  Google Scholar 

  • Manzano C, Abraham Z, López-Torrejón G, Del Pozo JC (2008) Identification of ubiquitinated proteins in Arabidopsis. Plant Mol Biol 68:145–158

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki J, Kawahara Y, Izawa T (2015) Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions. Plant Cell 27:633–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50:447–462

    Article  CAS  PubMed  Google Scholar 

  • Nanjo Y, Maruyama K, Yasue H, Yamaguchi-Shinozaki K, Shinozaki K, Komatsu S (2011) Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Plant Mol Biol 77:129–144

    Article  CAS  PubMed  Google Scholar 

  • Nanjo Y, Nakamura T, Komatsu S (2013) Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. J Proteome Res 12:4785–4798

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VT, Vuong TD, vanToai T, Lee JD, Wu X, Mian MA, Dorrance AE, Shannon JG, Nguyen HT (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52:2481–2493

    Article  CAS  Google Scholar 

  • Norberg M, Holmlund M, Nilsson O (2005) The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132:2203–2213

    Article  CAS  PubMed  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  CAS  PubMed  Google Scholar 

  • Paquette SM, Bak S, Feyereisen R (2000) Intron–exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol 19:307–317

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Ghosh JS, Pal A, Dey N (2011) Identification of genes involved in bamboo fiber development. Gene 478:19–27

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucl Acids Res 38:D227–D233

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Okamoto M, Shinoda S, Kushiro T, Koshiba T, Kamiya Y, Hirai N, Todoroki Y, Sakata K, Nambara E, Mizutani M (2006) A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Biosci Biotech Biochem 70:1731–1739

    Article  CAS  Google Scholar 

  • Sasaki E, Ogura T, Takei K, Kojima M, Kitahata N, Sakakibara H, Asami T, Shimada Y (2013) Uniconazole, a cytochrome P450 inhibitor, inhibits trans-zeatin biosynthesis in Arabidopsis. Phytochemistry 87:30–38

    Article  CAS  PubMed  Google Scholar 

  • Sauter M (2013) Root responses to flooding. Curr Opi Plant Biol 16:282–286

    Article  Google Scholar 

  • Smalle J, Kurepa J, Yang P, Emborg TJ, Babiychuk E, Kushnir S, Vierstra RD (2003) The pleiotropic role of the 26 S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell 15:965–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Wang Q, Li CC (2007) Characterization of the aggregation-prevention activity of p97/valosin-containing protein. BioChemistry 46:14889–14898

    Article  CAS  PubMed  Google Scholar 

  • Thirunavukkarasu N, Hossain F, Mohan S, Shiriga K, Mittal S, Sharma R, Singh RK, Gupta HS (2013) Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L.) under waterlogging stress. PloS One 8:e70433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rofas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Veen H, Vashisht D, Akman M, Girke T, Mustroph A, Reinen E, Hartman S, Kooiker M, van Tienderen P, Schranz ME, Bailey-Serres J (2016) Transcriptomes of eight Arabidopsis thaliana accessions reveal core conserved, genotype-and organ-specific responses to flooding stress. Plant Physiol 172:668–689

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. ‎Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Oh M, Sakata K, Komatsu S (2016) Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses. J Proteom 130:42–55

    Article  CAS  Google Scholar 

  • Yanagawa Y, Komatsu S (2012) Ubiquitin/proteasome-mediated proteolysis is involved in the response to flooding stress in soybean roots, independent of oxygen limitation. Plant Sci 185:250–258

    Article  PubMed  Google Scholar 

  • Yin X, Komatsu S (2015) Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress. J Proteome Res 119:183–195

    Article  CAS  Google Scholar 

  • Yin X, Komatsu S (2016) Nuclear proteomics reveals the role of protein synthesis and chromatin structure in root tip of soybean during the initial stage of flooding stress. J Proteome Res 15:2283–2298

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Sakata K, Nanjo Y, Komatsu S (2014a) Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques. J Proteom 106:1–16

  • Yin X, Sakata K, Komatsu S (2014b) Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress. J Proteome Res 13:5618–5634

  • Yin X, Nishimura M, Hajika M, Komatsu S (2016) Quantitative proteomics reveals the flooding-tolerance mechanism in mutant and abscisic acid-treated soybean. J Proteome Res 15:2008–2025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

XY supported by a scholarship from the Chinese Scholarship Council. This work was supported by JSPS KAKENHI Grant Number 15H04445.

Author contributions

Conceived and designed the experiments: XY, SK. Performed the experiments: XY, SK. Analyzed the data: XY, SH, SK. Contributed reagents/materials/analysis tools: XY, SH, MH, MN, SK. Wrote the paper: XY, SH, MH, MN, SK. Assisted with the manuscripts and critically revised it: SK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuko Komatsu.

Ethics declarations

Conflict interest

The authors confirm that this article content has no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Hiraga, S., Hajika, M. et al. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean. Plant Mol Biol 93, 479–496 (2017). https://doi.org/10.1007/s11103-016-0576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0576-2

Keywords

Navigation