Skip to main content

Advertisement

Log in

Curcumin, a Compound from Natural Sources, a True Scientific Challenge – A Review

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Curcumin, a plant-derived polyphenolic compound, naturally present in turmeric (Curcuma longa), has been the subject of intensive investigations on account of its various activities. The implementation of safe, beneficial and highly functional compounds from natural sources in human nutrition/prevention/therapy requires some modifications in order to achieve their multi-functionality, improve their bioavailability and delivery strategies, with the main aim to enhance their effectiveness. The low aqueous solubility of curcumin, its rapid metabolism and elimination from the body, and consequently, poor bioavailability, constitute major obstacles to its application. The main objectives of this review are related to reported strategies to overcome these limitations and, thereby, improve the solubility, stability and bioavailability of curcumin. The effectiveness of curcumin could be greatly improved by using nanoparticle-based carriers. The significance of the quality of a substance delivery system is reflected in the fact that carrying curcumin as a food additive/nutrition also means carrying the active biological product/drug. This review summarizes the state of the art, and highlights some examples and the most significant advances in the field of curcumin research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Darvesh AS, Aggarwal BB, Bishayee A (2012) Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13:218–228

    Article  CAS  Google Scholar 

  2. Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF (2016) Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv 34:813–826

    Article  Google Scholar 

  3. Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM (2013) Curcumin and liver disease: from chemistry to medicine. Compr Rev Food Sci F 13:62–77

    Article  Google Scholar 

  4. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Russo LL, Lillo A, Laino L, Muzio LL (2015) Biological and therapeutic activities, and anticancer properties of curcumin (review). Exp Ther Med 10:1615–1623

    CAS  Google Scholar 

  5. Stanic Z, Girousi S (2012) Electrochemical investigation of some biological important compounds correlated to curcumin. In: Sasaki J, Kichida M (eds) Curcumin: biosynthesis, medicinal uses and health benefits. Nova Science Publisher, New York, pp. 39–79

    Google Scholar 

  6. Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F, Vannacci A (2015) Curcumin, a golden spice with a low bioavailability. J Herb Med 5:57–70

    Article  Google Scholar 

  7. Mehanny M, Hathout RM, Geneidi AS, Mansour S (2016) Exploring the use of nanocarrier systems to deliver the magical molecule; curcumin and its derivatives. J Control Release 225:1–30

    Article  CAS  Google Scholar 

  8. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed  Anal 15:1867–1876

  9. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968

    Article  CAS  Google Scholar 

  10. Jovanovic SV, Steenken S, Boone CW, Simic MG (1999) H-atom transfer is a preferred antioxidant mechanism of curcumin. J Am Chem Soc 121:9677–9681

    Article  CAS  Google Scholar 

  11. Bernabé-Pineda M, Ramírez-Silva MT, Romero-Romo M, González-Vergara E, Rojas-Hernández A (2004) Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition. Spectrochim Acta A Mol Biomol Spectrosc 60:1091–1097

  12. Tønnesen HH, Másson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244:127–135

    Article  Google Scholar 

  13. Ravindranath V, Chandrasekhara N (1981) Metabolism of curcumin – studies with [3H] curcumin. Toxicology 22:337–344

  14. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  Google Scholar 

  15. Pari L, Murugan P (2007) Changes in glycoprtein components in streptoyocin–nicotinamide induced type 2 diabetes: influence of tetrahydrocurcumin from Curcumin longa. Plant Foods Hum Nutr 62:25–29

  16. Stanić Z, Voulgaropoulos A, Girousi S (2008) Electroanalytical study of the antioxidant and antitumor agent curcumin. Electroanal 20:1263–1266

    Article  Google Scholar 

  17. Masek A, Chrzescijanska E, Zaborski M (2013) Characteristics of curcumin using cyclic voltammetry, UV–Vis, fluorescence and thermogravimetric analysis. Electrochim Acta 107:441–447

    Article  CAS  Google Scholar 

  18. Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Jagt JDV (2005) Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem 13:3811–3820

    Article  CAS  Google Scholar 

  19. Derochette S, Serteyn D, Mouithys-Mickalad A, Ceusters J, Deby-Dupont G, Neven P, Franck T (2015) EquiNox2: a new method to measure NADPH oxidase activity and to study effect of inhibitors and their interactions with the enzyme. Talanta 144:1252–1259

    Article  CAS  Google Scholar 

  20. Vajragupta O, Boonchoong P, Watanbe H, Tohda M, Kummasud N, Sumanont Y (2003) Manganese complexes of curcumin and its derivatives: evaluation for the radical scavenging ability and neuroprotective activity. Free Radic Biol Med 35:1632–1644

    Article  CAS  Google Scholar 

  21. Liu Y-M, Lee K (2009) Modifications of the curcumin method enabling precise and accurate measurement of seawater boron concentration. Mar Chem 115:110–117

    Article  CAS  Google Scholar 

  22. Margar SN, Rhyman L, Ramasami P, Sekar N (2016) Fluorescent difluoroboron-curcumin analogs: an investigation of the electronic structures and photophysical properties. Spectrochim Acta A 152:241–251

    Article  CAS  Google Scholar 

  23. Chaicham A, Kulchat S, Tumcharern G, Tuntulani T, Tomapatanaget B (2010) Synthesis, photophysical properties, and cyanide detection in aqueous solution of BF2-curcumin dyes. Tetrahedron 66:6217–6223

    Article  CAS  Google Scholar 

  24. Patra D, Malaeb NN (2011) Fluorescence modulation of 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione by silver nanoparticles and its possible analytical application. Luminescence 27:11–15

    Article  Google Scholar 

  25. Ponnuvel K, Banuppriya G, Padmini V (2016) Highly efficient and selective detection of picric acid among other nitroaromatics by NIR fluorescent organic fluorophores. Sensor Actuat B-Chem 234:34–45

    Article  CAS  Google Scholar 

  26. Pourreza N, Golmohammadi H (2015) Application of curcumin nanoparticles in a lab-on-paper device as a simple and green pH probe. Talanta 131:136–141

    Article  CAS  Google Scholar 

  27. Xu G, Wang J, Si G, Wang M, Xue X, Wu B, Zhou S (2016) A novel highly selective chemosensor based on curcumin for detection of Cu2+ and its application for bioimaging. Sensor Actuat B-Chem 230:684–689

    Article  CAS  Google Scholar 

  28. Raj S, Shankaran DR (2016) Curcumin based biocompatible nanofibers for lead ion detection. Sensor Actuat B-Chem 226:318–325

    Article  CAS  Google Scholar 

  29. Pourreza N, Golmohammadi H (2014) Green colorimetric recognition of trace sulfide ions in water samples using curcumin nanoparticle in micelle mediated system. Talanta 119:181–186

    Article  CAS  Google Scholar 

  30. Yue Y, Yin C, Huo F, Chao J, Zhang Y (2014) The application of natural drug-curcumin in the detection hypochlorous acid of real sample and its bioimaging. Sensor Actuat B-Chem 202:551–556

    Article  CAS  Google Scholar 

  31. Saithongdee A, Praphairaksit N, Imyim A (2014) Electrospun curcumin-loaded zein membrane for iron(III) ions sensing. Sensor Actuat B-Chem 202:935–940

    Article  CAS  Google Scholar 

  32. Ojani R, Raoof J-B, Zamani S (2012) A novel voltammetric sensor for amoxicillin based on nickel–curcumin complex modified carbon paste electrode. Bioelectrochemistry 85:44–49

    Article  CAS  Google Scholar 

  33. Serpi C, Stanić Z, Girousi S (2010) Electroanalytical study of the interaction between dsDNA and curcumin in the presence of copper(II). Talanta 81:1731–1734

    Article  CAS  Google Scholar 

  34. Serpi C, Stanić Z, Girousi S (2010) Electroanalytical study of the interaction between double stranded DNA and antitumor agent curcumin. Anal Lett 43:1–16

  35. Serpi C, Stanić Z, Girousi S (2013) Adsorptive transfer voltammetry applied to the study of chromium-induced DNA damage in the presence of curcumin. Int J Environ An Ch 93:543–552

    Article  CAS  Google Scholar 

  36. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15:195–218

    Article  CAS  Google Scholar 

  37. Neiman DC, Cialdella-Kam L, Knab AM, Shanely RA (2012) Influence of red pepper spice and turmeric on inflammation and oxidative stress biomarkers in overweight females: a metabolomics approach. Plant Foods Hum Nutr 67:415–421

    Article  Google Scholar 

  38. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46:2–28

    Article  CAS  Google Scholar 

  39. Li J, Shin GH, Lee IW, Chen X, Park HJ (2016) Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocoll 56:41–49

    Article  CAS  Google Scholar 

  40. Kumar A, Kaur G, Kansal SK, Chaudhary GR, Mehta SK (2016) Enhanced solubilization of curcumin in mixed surfactant vesicles. Food Chem 199:660–666

    Article  CAS  Google Scholar 

  41. Shah BR, Li Y, Jin W, An Y, He L, Li Z, Xu W, Li B (2016) Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocoll 52:369–377

    Article  CAS  Google Scholar 

  42. Righeschi C, Bergonzi MC, Isacchi B, Bazzicalupi C, Gratteri P, Bilia AR (2016) Enhanced curcumin permeability by SLN formulation: the PAMPA approach. Food Sci Technol-LWT 66:475–483

    Article  CAS  Google Scholar 

  43. Pinheiro AC, Coimbra MA, Vicente AA (2016) In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers - effect of interfacial composition. Food Hydrocoll 52:460–467

    Article  CAS  Google Scholar 

  44. Borrin TR, Georges EL, Moraes ICF, Pinho SC (2016) Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: an evaluation of process parameters and physico-chemical stability. J Food Eng 169:1–9

    Article  CAS  Google Scholar 

  45. Delmar K, Bianco-Peled H (2016) Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydr Polym 136:570–580

    Article  CAS  Google Scholar 

  46. Tan C, Xie J, Zhang X, Cai J, Xia S (2016) Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll 57:236–245

    Article  CAS  Google Scholar 

  47. Mutalik S, Suthar NA, Managuli RS, Shetty PK, Avadhani K, Kalthur G, Kulkarni RV, Thomas R (2016) Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin. Int J Biol Macromol 86:709–720

    Article  CAS  Google Scholar 

  48. Huang Y-C, Kuo T-H (2016) O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocoll 53:261–269

    Article  CAS  Google Scholar 

  49. Zhou M, Wang T, Hu Q, Luo Y (2016) Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocoll 57:20–29

    Article  CAS  Google Scholar 

  50. Rao PJ, Khanum H (2016) A green chemistry approach for nanoencapsulation of bioactive compound – curcumin. Food Sci Technol-LWT 65:695–702

    Article  CAS  Google Scholar 

  51. Zou L, Zheng B, Zhang R, Zhang Z, Liu W, Liu C, Xiao H, McClements DJ (2016) Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Res Int 81:74–82

    Article  CAS  Google Scholar 

  52. Pan Y, Tikekar RV, Wang MS, Avena-Bustillos RJ, Nitin N (2015) Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds. Food Hydrocoll 43:82–90

    Article  CAS  Google Scholar 

  53. Zou L, Zheng B, Liu W, Liu C, Xiao H, McClements DJ (2015) Enhancing nutraceutical bioavailability using excipient emulsions: influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. J Funct Foods 15:72–83

    Article  CAS  Google Scholar 

  54. Li M, Gao M, Fu Y, Chen C, Meng X, Fan A, Kong D, Wang Z, Zhao Y (2016) Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery. Colloid Surface B 140:11–18

    Article  CAS  Google Scholar 

  55. Laokuldilok N, Thakeow P, Kopermsub P, Utama-ang N (2016) Optimisation of microencapsulation of turmeric extract for masking flavor. Food Chem 194:695–704

    Article  CAS  Google Scholar 

  56. Mokrani A, Krisa S, Cluzet S, Costa GD, Temsamani H, Renouf E, Mérillon J-M, Madani K, Mesnil M, Monvoisin A, Richard T (2016) Phenolic contents and bioactive potential of peach fruit extracts. Food Chem 202:212–220

    Article  CAS  Google Scholar 

  57. Salahuddin P, Fatima MT, Abdelhameed AS, Nusrat S, Khan RH (2016) Structure of amyloid oligomers and their mechanisms of toxicities: targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 114:41–58

    Article  CAS  Google Scholar 

  58. Temba BA, Fletcher MT, Fox GP, Harvey JJW, Sultanbawa Y (2016) Inactivation of Aspergillus flavus spores by curcumin-mediated photosensitization. Food Control 59:708–713

  59. Liu X, Zhu L, Gao X, Wang Y, Lu H, Tang Y, Li J (2016) Magnetic molecularly imprinted polymers for spectrophotometric quantification of curcumin in food. Food Chem 202:309–315

    Article  CAS  Google Scholar 

  60. Osorio-Tobón JF, Carvalho PIN, Barbero GF, Nogueira GC, Rostagno MA, Meireles MAA (2016) Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chem 200:167–174

    Article  Google Scholar 

  61. Lu W, Kelly AL, Miao S (2016) Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci Technol 47:1–9

    Article  Google Scholar 

  62. Faraj AA, Shaik AS, Ratemi E, Halwani R (2016) Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release 225:240–251

    Article  Google Scholar 

  63. Mau L-P, Cheng W-C, Chen J-K, Shieh Y-S, Cochran DL, Huang R-Y (2016) Curcumin ameliorates alveolar bone destruction of experimental periodontitis by modulating osteoclast differentiation, activation and function. J Funct Foods 22:243–256

    Article  CAS  Google Scholar 

  64. Kao H-H, Wu C-J, Won S-J, Shin J-W, Liu H-S, Su C-L (2011) Kinase gene expression and subcellular protein expression pattern of protein kinase C isoforms in curcumin-treated human hepatocellular carcinoma Hep 3B cells. Plant Foods Hum Nutr 66:136–142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 172036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorka Stanić.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human and animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanić, Z. Curcumin, a Compound from Natural Sources, a True Scientific Challenge – A Review. Plant Foods Hum Nutr 72, 1–12 (2017). https://doi.org/10.1007/s11130-016-0590-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-016-0590-1

Keywords

Navigation