Skip to main content
Log in

Modified ceria as a substitute for sulfuric acid in the liquid phase nitration of toluene

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ceria, sulfated ceria, ceria–zirconia and sulfated ceria–zirconia catalysts were prepared via the co-precipitation method and calcined at 823 K. The catalysts were characterized by XRD, BET surface area, FTIR, TGA and EDAX. The acidity of the catalysts was studied by pyridine adsorbed FTIR. All the peaks in XRD correspond to the cubic fluorite structure of ceria. The crystallite size of the catalysts was found to be 4–8 nm. Incorporation of zirconia stabilizes the surface sulfate species and thus increases the sulfate content. Sulfation decreases the surface area, but increases the acidity, leading to enhanced catalytic activity. All the catalysts were found to be stable up to 923 K. Catalytic activities were tested towards the liquid phase nitration of toluene. A maximum conversion of about 34 % is achievable for the nitration of toluene to dinitrotoluene. Solid acids effectively play the role of sulfuric acid in the reaction, assisting the formation of nitronium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bera P, Gayen A, Hegde MS, Lalla NP, Spadaro L, Frusteri F (2003) J Phys Chem B 107:6122–6130

    Article  CAS  Google Scholar 

  2. Jacobs G, Williams L, Graham U, Sparks D, Davis BH (2003) J Phys Chem B 107:10398–10404

    Article  CAS  Google Scholar 

  3. Li RX, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S (2002) Solid State Ion 151:235–241

    Article  CAS  Google Scholar 

  4. Sohlberg K, Pantelides ST, Pennycook SF (2001) J Am Chem Soc 123:6609–6611

    Article  CAS  Google Scholar 

  5. Jasinski P, Suzuki T, Anderson HU (2003) Sens Actuators B 95:73–77

    Article  Google Scholar 

  6. Goubin F, Rocquefelte X, Whangbo MH, Montardi Y, Brec R, Jobic S (2004) Chem Mater 16:662–669

    Article  CAS  Google Scholar 

  7. Shchukin DG, Caruso RA (2004) Chem Mater 16:2287–2292

    Article  CAS  Google Scholar 

  8. Izu N, Shin W, Murayama N (2003) Sens Actuators B Chem 93:449

    Article  Google Scholar 

  9. Kaspar J, Graziani M, Fornasiero P (2000) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam

    Google Scholar 

  10. Ranga Rao G (1999) Bull Mater Sci 22:89

    Article  Google Scholar 

  11. Kaspar J, Fornasiero P, Hickey N (2003) Catal Today 77:419

    Article  CAS  Google Scholar 

  12. Fornasiero P, Ranga Rao G, Kaspar J, Erari FL, Graziani M (1998) J Catal 175:269

    Article  CAS  Google Scholar 

  13. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179

    Article  Google Scholar 

  14. Wang X, Gorte RJ (2003) Appl Catal A 247:157

    Article  CAS  Google Scholar 

  15. Arata K (1990) Adv Catal 37:165

    Article  CAS  Google Scholar 

  16. Jia XN, Yang JJ, Zuo YM (2001) Chin Chem Lett 12(5):439–442

    CAS  Google Scholar 

  17. Das D, Mishra HK, Dalai AK, Parida KM (2003) Appl Catal A 243:271

    Article  CAS  Google Scholar 

  18. Dasgupta S, Török B (2008) Curr Org Synth 5:321–342

    Article  CAS  Google Scholar 

  19. Conlon DA, Lynch JE, Hartner FW, Reamer RA, Volante RP (1996) J Org Chem 61:6425

    Article  CAS  Google Scholar 

  20. Tomaz M, Jaroslav J (2001) Synth Commun 31:173

    Article  Google Scholar 

  21. Mallick S, Parida KM (2007) Catal Commun 8:1487–1492

    Article  CAS  Google Scholar 

  22. Sato H, Hirose K (1998) Appl Catal A 174:77–81

    Article  CAS  Google Scholar 

  23. German A, Akouz T, Figueras F (1994) J Catal 147:163–170

    Article  Google Scholar 

  24. Parida KM, Pattnayak PK (1997) Catal Lett 47:255–257

    Article  CAS  Google Scholar 

  25. Bernasconi S, Pirngruber GD, Kogelbauer A, Prins R (2003) J Catal 219:231–241

    Article  CAS  Google Scholar 

  26. Kim SS, Pinnavaia TJ, Damavarapu R (2008) J Catal 253:289–294

    Article  CAS  Google Scholar 

  27. Kogelbauer A, Vassena D, Prins R, Armor JN (2000) Catal Today 55:151–160

    Article  CAS  Google Scholar 

  28. Mao W, Ma H, Wang B (2009) J Hazard Mater 167:707–712

    Article  CAS  Google Scholar 

  29. Sunajadevi KR, Sugunan S (2005) Catal Commun 6:611

    Article  CAS  Google Scholar 

  30. Rodrigues JAR, De Oliveira Filho AP, Moran PJS, Custodia R (1999) Tetrahedron 55:6733

    Article  CAS  Google Scholar 

  31. Sato H, Nagai K, Yoshioka H, Nagaoka Y (1999) Appl Catal A 180:359

    Article  CAS  Google Scholar 

  32. Sato H, Nagai K, Yoshioka H, Nagaoka Y (1998) Appl Catal A 175:209–213

    Article  CAS  Google Scholar 

  33. Reddy BM, Sreekanth PM, Lakshmanan P (2005) J Mol Catal A 237:93–100

    Article  CAS  Google Scholar 

  34. Hirano M, Fukuda Y, Iwata H, Hotta Y, Inagaki M (2000) J Am Ceram Soc 5:83

    Google Scholar 

  35. Varala R, Alam MM, Adapa SR (2003) Synlett 1:67

    Google Scholar 

  36. Morterra C, Bolis V, Cerrato G (1993) Catal Today 17:505

    Article  CAS  Google Scholar 

  37. Morterra C, Cerrato G, Pinna F, Signoretto M (1994) J Phys Chem 98(123):73

    Google Scholar 

  38. Clearfield A, Serrete GPD, Khazi-Syed AH (1994) Catal Today 20:295

    Article  CAS  Google Scholar 

  39. Kustov LM, Kazansky VB, Figueras F, Tichit D (1994) J Catal 150:143

    Article  CAS  Google Scholar 

  40. Saur O, Bensitel M, Saad ABM, Lavalley JC, Tripp CR, Morrow BA (1986) J Catal 99:104

    Article  CAS  Google Scholar 

  41. Li N, Wang AQ, Zheng MY, Wang XD, Cheng RH, Zhang T (2004) J Catal 225:307

    Article  CAS  Google Scholar 

  42. Sreedhar I, Suresh Kumar Reddy K, Raghavan KV (2009) Kinet Catal 5(1):131–137

    Article  Google Scholar 

  43. Kalbasi RJ, Ghiaci M, Massah AR (2009) Appl Catal A 353:1–8

    Article  CAS  Google Scholar 

  44. Kogelbauer A, Vassena D, Prins R, Armor JN (2000) Catal Today 55:151–160

    Article  CAS  Google Scholar 

  45. Ramprasad D, Waller FJ, Barret AG, Braddock C (1998) US Patent 5,728,901

  46. Yadav GD, Nair JJ, Narendra V (2001) US Patent 6,177,596 B1

  47. Chaubal NS, Sawant MR (2007) Catal Commun 8:845

    Article  CAS  Google Scholar 

  48. Brei VV, Prudius SV, Melvzhyk OV (2003) Appl Catal A 239:11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the funding support received for this work (MRPDSC-1108) from Christ University, Bangalore and express sincere gratitude to Bangalore University, St. Joseph’s College, Bangalore and Indian Institute of Science, Bangalore for various spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Sunaja Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunaja Devi, K.R., Jayashree, S. Modified ceria as a substitute for sulfuric acid in the liquid phase nitration of toluene. Reac Kinet Mech Cat 108, 183–192 (2013). https://doi.org/10.1007/s11144-012-0513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0513-6

Keywords

Navigation