Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 3/2014

01.09.2014

Effects of GLP-1 on appetite and weight

verfasst von: Meera Shah, Adrian Vella

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Glucagon-like peptide 1 (GLP-1) is a cleavage product of the pre-proglucagon gene which is expressed in the α-cells of the pancreas, the L-cells of the intestine, and neurons located in the caudal brainstem and hypothalamus. GLP-1 is of relevance to appetite and weight maintenance because it has actions on the gastrointestinal tract as well as the direct regulation of appetite. It delays gastric emptying and gut motility in humans. In addition, interventricular injections of GLP-1 inhibit food intake, independent of the presence of food in the stomach or gastric emptying. Peripherally administered GLP-1 also affects the central regulation of feeding. It is therefore the synergistic actions of GLP-1 in the gut and brain, acting on both central and peripheral receptors that seem responsible for the effects of the hormone on satiety.
Literatur
1.
2.
Zurück zum Zitat Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.PubMedCrossRef Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.PubMedCrossRef
3.
5.
Zurück zum Zitat Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metab Disord. 2001;25 Suppl 5:S42–7.PubMedCrossRef Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metab Disord. 2001;25 Suppl 5:S42–7.PubMedCrossRef
6.
Zurück zum Zitat Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J. Glucagon-like peptide-1 (7–36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993;138:159–66.PubMedCrossRef Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J. Glucagon-like peptide-1 (7–36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993;138:159–66.PubMedCrossRef
7.
Zurück zum Zitat Hermann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56:117–26.CrossRef Hermann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56:117–26.CrossRef
8.
Zurück zum Zitat Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon- like peptide-1 secretion. Endocrinology. 1999;140(4):1687–94.PubMed Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon- like peptide-1 secretion. Endocrinology. 1999;140(4):1687–94.PubMed
9.
Zurück zum Zitat Balks HJ, Holst JJ, Von Zur MA, Brabant G. Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: Cholinergic control of GLP-1 secretion via muscarinic receptors. J Clin Endocrinol Metab. 1997;82(3):786–90.PubMed Balks HJ, Holst JJ, Von Zur MA, Brabant G. Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: Cholinergic control of GLP-1 secretion via muscarinic receptors. J Clin Endocrinol Metab. 1997;82(3):786–90.PubMed
10.
Zurück zum Zitat Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab. 2006;290:E550–9.PubMedCrossRef Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab. 2006;290:E550–9.PubMedCrossRef
12.
Zurück zum Zitat Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Oxyntomodulin from distal gut: role in regulation of gastric and pancreatic functions. Dig Dis Sci. 1989;34:1411–9.PubMedCrossRef Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Oxyntomodulin from distal gut: role in regulation of gastric and pancreatic functions. Dig Dis Sci. 1989;34:1411–9.PubMedCrossRef
13.
Zurück zum Zitat Tang-Christensen M, Larsen PJ, Thulesen J, Rømer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med. 2000;6(7):802–7.PubMedCrossRef Tang-Christensen M, Larsen PJ, Thulesen J, Rømer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med. 2000;6(7):802–7.PubMedCrossRef
14.
Zurück zum Zitat Lovshin J, Estall J, Yusta B, Brown TJ, Drucker DJ. Glucagon-like Peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J Biol Chem. 2001;276(24):21489–99.PubMedCrossRef Lovshin J, Estall J, Yusta B, Brown TJ, Drucker DJ. Glucagon-like Peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J Biol Chem. 2001;276(24):21489–99.PubMedCrossRef
15.
Zurück zum Zitat Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997;273:E981–8.PubMed Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997;273:E981–8.PubMed
16.
Zurück zum Zitat Schirra J, Wank U, Arnold R, Goke B, Katschinski M. Effects of glucagon-like peptide-1 (7–36) amide on motility and sensation of the proximal stomach in humans. Gut. 2002;50:341–8.PubMedCentralPubMedCrossRef Schirra J, Wank U, Arnold R, Goke B, Katschinski M. Effects of glucagon-like peptide-1 (7–36) amide on motility and sensation of the proximal stomach in humans. Gut. 2002;50:341–8.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Meier JJ, Gallwitz B, Salmen S, et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab. 2003;88:2719–25.PubMedCrossRef Meier JJ, Gallwitz B, Salmen S, et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab. 2003;88:2719–25.PubMedCrossRef
18.
Zurück zum Zitat Delgado-Aros S, Doe-Young K, Burton DD, Thomforde GM, et al. Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol. 2002;282:G424–31.PubMed Delgado-Aros S, Doe-Young K, Burton DD, Thomforde GM, et al. Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol. 2002;282:G424–31.PubMed
19.
Zurück zum Zitat Ruttimann EB et al. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology. 2009;150:1174–81.PubMedCentralPubMedCrossRef Ruttimann EB et al. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology. 2009;150:1174–81.PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379:69–72.PubMedCrossRef Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379:69–72.PubMedCrossRef
21.
Zurück zum Zitat Barrera JG et al. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J Neurosci. 2011;31:3904–13.PubMedCentralPubMedCrossRef Barrera JG et al. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J Neurosci. 2011;31:3904–13.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Chaudhri OB, Parkinson JR, Kuo YT, et al. Differential hypothalamic neuronal activation following peripheral injection of GLP-1 and oxyntomodulin in mice detected by manganese-enhanced magnetic resonance imaging. Biochem Biophys Res Commun. 2006;350:298–306.PubMedCrossRef Chaudhri OB, Parkinson JR, Kuo YT, et al. Differential hypothalamic neuronal activation following peripheral injection of GLP-1 and oxyntomodulin in mice detected by manganese-enhanced magnetic resonance imaging. Biochem Biophys Res Commun. 2006;350:298–306.PubMedCrossRef
23.
Zurück zum Zitat Min DK, Tuor UI, Koopmans HS, Chelikani PK. Changes in differential functional magnetic resonance signals in the rodent brain elicited by mixed-nutrient or protein-enriched meals. Gastroenterology. 2011;141:1832–41.PubMedCrossRef Min DK, Tuor UI, Koopmans HS, Chelikani PK. Changes in differential functional magnetic resonance signals in the rodent brain elicited by mixed-nutrient or protein-enriched meals. Gastroenterology. 2011;141:1832–41.PubMedCrossRef
24.
Zurück zum Zitat Dailey M.J., Moran T. H. Glucagon-like peptide 1 and appetite. Trends in Endocrinology and Metabolism. 2013; 24 (2). Dailey M.J., Moran T. H. Glucagon-like peptide 1 and appetite. Trends in Endocrinology and Metabolism. 2013; 24 (2).
25.
Zurück zum Zitat Larsen PJ et al. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology. 1997;138:4445–55.PubMed Larsen PJ et al. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology. 1997;138:4445–55.PubMed
26.
Zurück zum Zitat Seo S. Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats. Endocr J. 2008;55:867–74.PubMedCrossRef Seo S. Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats. Endocr J. 2008;55:867–74.PubMedCrossRef
27.
Zurück zum Zitat Bugarith K et al. Basomedial hypothalamic injections of neuropeptide Y conjugated to saporin selectively disrupt hypothalamic controls of food intake. Endocrinology. 2005;146:1179–91.PubMedCrossRef Bugarith K et al. Basomedial hypothalamic injections of neuropeptide Y conjugated to saporin selectively disrupt hypothalamic controls of food intake. Endocrinology. 2005;146:1179–91.PubMedCrossRef
28.
Zurück zum Zitat Blevins JE, Baskin DG. Hypothalamic-brainstem circuits controlling eating. Forum Nutr. 2010;63:133–40.PubMedCrossRef Blevins JE, Baskin DG. Hypothalamic-brainstem circuits controlling eating. Forum Nutr. 2010;63:133–40.PubMedCrossRef
29.
Zurück zum Zitat Richards P, Parker HE, Adriaenssens AE, et al. (2013) Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model. Diabetes; Publish Ahead of Print, published online December 2, 2013. Richards P, Parker HE, Adriaenssens AE, et al. (2013) Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model. Diabetes; Publish Ahead of Print, published online December 2, 2013.
30.
Zurück zum Zitat Kinzig KP et al. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci. 2002;22:10470–6.PubMed Kinzig KP et al. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci. 2002;22:10470–6.PubMed
31.
Zurück zum Zitat Dailey MJ, Moran T. H. Glucagon-like peptide 1 and appetite. Trends in Endocrinology and Metabolism. 2013;24 (2). Dailey MJ, Moran T. H. Glucagon-like peptide 1 and appetite. Trends in Endocrinology and Metabolism. 2013;24 (2).
32.
Zurück zum Zitat Kellum JM, Kuemmerle JF, O’Dorisio TM. Gastrointestinal hormone responses to meals before and after gastric bypass and vertical banded gastroplasty. Ann Surg. 1990;211:763–70.PubMedCentralPubMedCrossRef Kellum JM, Kuemmerle JF, O’Dorisio TM. Gastrointestinal hormone responses to meals before and after gastric bypass and vertical banded gastroplasty. Ann Surg. 1990;211:763–70.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Laferrère B, Teixeira JMJ. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:2479–85.PubMedCentralPubMedCrossRef Laferrère B, Teixeira JMJ. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:2479–85.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat le Roux CW, Aylwin SJ, Batterham RL. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.PubMedCentralPubMedCrossRef le Roux CW, Aylwin SJ, Batterham RL. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Kashyap SR, Bhatt DL, Wolski K. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36:2175–82.PubMedCentralPubMedCrossRef Kashyap SR, Bhatt DL, Wolski K. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36:2175–82.PubMedCentralPubMedCrossRef
36.
37.
Zurück zum Zitat Habegger KM, Kirchner H, Yi CX, Heppner KM, et al. GLP-1R agonism enhances adjustable gastric banding in diet-induced obese rats. Diabetes Care. 2013;62(9):3261–7.CrossRef Habegger KM, Kirchner H, Yi CX, Heppner KM, et al. GLP-1R agonism enhances adjustable gastric banding in diet-induced obese rats. Diabetes Care. 2013;62(9):3261–7.CrossRef
38.
Zurück zum Zitat Shah M, Law JH, Micheletto F, et al. Contribution of endogenous glucagon-like peptide-1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes. 2014;63:1–10.CrossRef Shah M, Law JH, Micheletto F, et al. Contribution of endogenous glucagon-like peptide-1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes. 2014;63:1–10.CrossRef
39.
Zurück zum Zitat Deane AM, Nguyen NQ, Stevens JE. Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J Clin Endocrinol Metab. 2010;95:215–21.PubMedCrossRef Deane AM, Nguyen NQ, Stevens JE. Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J Clin Endocrinol Metab. 2010;95:215–21.PubMedCrossRef
40.
Zurück zum Zitat Nicolaus M, Brödl J, Linke R, Woerle H-J, Göke B, Schirra J. Endogenous GLP-1 regulates postprandial glycemia in humans: relative contributions of insulin, glucagon, and gastric emptying. J Clin Endocrinol Metab. 2011;96:229–36.PubMedCrossRef Nicolaus M, Brödl J, Linke R, Woerle H-J, Göke B, Schirra J. Endogenous GLP-1 regulates postprandial glycemia in humans: relative contributions of insulin, glucagon, and gastric emptying. J Clin Endocrinol Metab. 2011;96:229–36.PubMedCrossRef
41.
Zurück zum Zitat Wilson-Perez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes. 2013;62(7):2380–5.PubMedCentralPubMedCrossRef Wilson-Perez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes. 2013;62(7):2380–5.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Nea I. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol Rev. 1997;273:G920–7. Nea I. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol Rev. 1997;273:G920–7.
43.
Zurück zum Zitat Aea W. Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am J Physiol. 1998;275:G984–92. Aea W. Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am J Physiol. 1998;275:G984–92.
44.
Zurück zum Zitat Aea A. Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors. Neurogastroenterol Motil. 2010;22:664–e203.CrossRef Aea A. Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors. Neurogastroenterol Motil. 2010;22:664–e203.CrossRef
45.
Zurück zum Zitat Mea T-C. Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. Am J Physiol. 1996;271:R848–56. Mea T-C. Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. Am J Physiol. 1996;271:R848–56.
46.
Zurück zum Zitat Gulpinar MA. Glucagon-like peptide (GLP-1) is involved in the central modulation of fecal output in rats. Am J Physiol Gastrointest Liver Physiol. 2000;278:924–9. Gulpinar MA. Glucagon-like peptide (GLP-1) is involved in the central modulation of fecal output in rats. Am J Physiol Gastrointest Liver Physiol. 2000;278:924–9.
47.
Zurück zum Zitat Ayachi SE. Contraction induced by glicentin on smooth muscle cells from the human colon is abolished by exendin (9–39). Neurogastroenterol Motil. 2005;17:302–9.PubMedCrossRef Ayachi SE. Contraction induced by glicentin on smooth muscle cells from the human colon is abolished by exendin (9–39). Neurogastroenterol Motil. 2005;17:302–9.PubMedCrossRef
48.
Zurück zum Zitat Yoder SM. Stimulation of incretin secretion by dietary lipid: is it dose dependent? Am J Physiol Gastrointest Liver Physiol. 2009;297:299–305.CrossRef Yoder SM. Stimulation of incretin secretion by dietary lipid: is it dose dependent? Am J Physiol Gastrointest Liver Physiol. 2009;297:299–305.CrossRef
49.
Zurück zum Zitat Wank U, Schirra J, Arnold R, Goke B, Katschinki M. Effects of GLP-1 on proximal gastric motor and sensory function in human. Gastroenterology. 1998;114:A1190.CrossRef Wank U, Schirra J, Arnold R, Goke B, Katschinki M. Effects of GLP-1 on proximal gastric motor and sensory function in human. Gastroenterology. 1998;114:A1190.CrossRef
50.
Zurück zum Zitat Delgado-Aros S, Vella A, Camilleri M, et al. Effects of glucagon-like peptide-1 and feeding on gastric volumes in diabetes mellitus with cardio-vagal dysfunction. Neurogastroenterol Motil. 2003;15:435–43.PubMedCrossRef Delgado-Aros S, Vella A, Camilleri M, et al. Effects of glucagon-like peptide-1 and feeding on gastric volumes in diabetes mellitus with cardio-vagal dysfunction. Neurogastroenterol Motil. 2003;15:435–43.PubMedCrossRef
51.
Zurück zum Zitat Holst JJ, Toft-Nielsen MB, Orskov C, Nauck M, Willms B. On the effects of glucagon-like peptide-1 on blood glucose regulation in normal and diabetic subjects. Ann N Y Acad Sci. 1996;805:729–36.PubMedCrossRef Holst JJ, Toft-Nielsen MB, Orskov C, Nauck M, Willms B. On the effects of glucagon-like peptide-1 on blood glucose regulation in normal and diabetic subjects. Ann N Y Acad Sci. 1996;805:729–36.PubMedCrossRef
52.
Zurück zum Zitat Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a arallel-group study. Lancet. 2002;359:824–30.PubMedCrossRef Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a arallel-group study. Lancet. 2002;359:824–30.PubMedCrossRef
53.
Zurück zum Zitat Vilsboll T, Christensen M, Junker AE FKK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:7771.CrossRef Vilsboll T, Christensen M, Junker AE FKK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:7771.CrossRef
54.
Zurück zum Zitat Buse JB, Henry RR, Han J, Kim DD, MS F, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27:2628–35.PubMedCrossRef Buse JB, Henry RR, Han J, Kim DD, MS F, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27:2628–35.PubMedCrossRef
55.
Zurück zum Zitat DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28:1092–100.PubMedCrossRef DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28:1092–100.PubMedCrossRef
56.
Zurück zum Zitat Moretto TJ, Milton DR RT, Macconell LA, Okerson T, AM W, Brodows RG. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group study. Clin Ther. 2008;30:1448–60.PubMedCrossRef Moretto TJ, Milton DR RT, Macconell LA, Okerson T, AM W, Brodows RG. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group study. Clin Ther. 2008;30:1448–60.PubMedCrossRef
57.
Zurück zum Zitat Astrup A, Rossner S, Van GL, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374:1606–16.PubMedCrossRef Astrup A, Rossner S, Van GL, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374:1606–16.PubMedCrossRef
58.
Zurück zum Zitat Bergenstal R, Lewin A, Bailey T, Chang D, Gylvin T, Roberts V. Efficacy and safety of biphasic insulin aspart 70/30 versus exenatide in subjects with type 2 diabetes failing to achieve glycemic control with metformin and a sulfonylurea. Curr Med Res Opin. 2009;25:65–75.PubMedCrossRef Bergenstal R, Lewin A, Bailey T, Chang D, Gylvin T, Roberts V. Efficacy and safety of biphasic insulin aspart 70/30 versus exenatide in subjects with type 2 diabetes failing to achieve glycemic control with metformin and a sulfonylurea. Curr Med Res Opin. 2009;25:65–75.PubMedCrossRef
59.
Zurück zum Zitat Russell-Jones D, Vaag A, Schmitz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met + SU): a randomised controlled trial. Diabetologia. 2009;52:2046–55.PubMedCentralPubMedCrossRef Russell-Jones D, Vaag A, Schmitz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met + SU): a randomised controlled trial. Diabetologia. 2009;52:2046–55.PubMedCentralPubMedCrossRef
60.
Zurück zum Zitat Gallwitz B, Bohmer M, Segiet T, et al. Exenatide twice daily versus premixed insulin aspart 70/30 in metformin-treated patients with type 2 diabetes: a randomized 26-week study on glycemic control and hypoglycemia. Diabetes Care. 2011;34:604–6.PubMedCentralPubMedCrossRef Gallwitz B, Bohmer M, Segiet T, et al. Exenatide twice daily versus premixed insulin aspart 70/30 in metformin-treated patients with type 2 diabetes: a randomized 26-week study on glycemic control and hypoglycemia. Diabetes Care. 2011;34:604–6.PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374(9683):39–47.PubMedCrossRef Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374(9683):39–47.PubMedCrossRef
62.
Zurück zum Zitat Buse JB, Nauck M, Forst T. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet. 2013;381:117–24.PubMedCrossRef Buse JB, Nauck M, Forst T. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet. 2013;381:117–24.PubMedCrossRef
63.
Zurück zum Zitat Kelly A, Rudser KD, Nathan BM, Fox CK, et al. The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity. JAMA Pediatr. 2013;167(4):355–60.PubMedCentralPubMedCrossRef Kelly A, Rudser KD, Nathan BM, Fox CK, et al. The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity. JAMA Pediatr. 2013;167(4):355–60.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Bunck MC, Diamant M, Eliasson B, et al. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care. 2010;33:1734–7.PubMedCentralPubMedCrossRef Bunck MC, Diamant M, Eliasson B, et al. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care. 2010;33:1734–7.PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Jendle J, Nauck MA, Matthews DR, Frid A, Hermansen K, et al. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab. 2009;11:1163–72.PubMedCrossRef Jendle J, Nauck MA, Matthews DR, Frid A, Hermansen K, et al. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab. 2009;11:1163–72.PubMedCrossRef
66.
Zurück zum Zitat Zoicas F, Droste M, Mayr B, Buchfelder M, Schofl C, et al. GLP-1 analogues as a new treatment option for hypothalamic obesity in adults: report of nine cases. Eur J Endocrinol. 2013;168(5):699–706.PubMedCrossRef Zoicas F, Droste M, Mayr B, Buchfelder M, Schofl C, et al. GLP-1 analogues as a new treatment option for hypothalamic obesity in adults: report of nine cases. Eur J Endocrinol. 2013;168(5):699–706.PubMedCrossRef
67.
Zurück zum Zitat Garber A, Henry RR RR, Hale P, CT C, Bode B. Liraglutide, a once-daily human glucagon-like peptide 1 analogue, provides sustained improvements in glycaemic control and weight for 2 years as monotherapy compared with glimepiride in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13:348–56.PubMedCentralPubMedCrossRef Garber A, Henry RR RR, Hale P, CT C, Bode B. Liraglutide, a once-daily human glucagon-like peptide 1 analogue, provides sustained improvements in glycaemic control and weight for 2 years as monotherapy compared with glimepiride in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13:348–56.PubMedCentralPubMedCrossRef
68.
Zurück zum Zitat Macconell L, Pencek R, Li Y, Maggs D, Porter L. Exenatide once weekly: sustained improvement in glycemic control and cardiometabolic measures through 3 years. Diabetes Metab Syndr Obes. 2013;6:31–41.PubMedCentralPubMed Macconell L, Pencek R, Li Y, Maggs D, Porter L. Exenatide once weekly: sustained improvement in glycemic control and cardiometabolic measures through 3 years. Diabetes Metab Syndr Obes. 2013;6:31–41.PubMedCentralPubMed
69.
Zurück zum Zitat Bunck MC, Corner A, Eiasson B, et al. Effects of exenatide on measures of beta-cell function after 3years in metformin-treated patients with type 2 diabetes. Diabetes Care. 2011;34:2041–7.PubMedCentralPubMedCrossRef Bunck MC, Corner A, Eiasson B, et al. Effects of exenatide on measures of beta-cell function after 3years in metformin-treated patients with type 2 diabetes. Diabetes Care. 2011;34:2041–7.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of GLP-1 on appetite and body weight: focus on the central nervous system. J Endocrinol. 2013 (Dec 9. [Epub ahead of print]). van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of GLP-1 on appetite and body weight: focus on the central nervous system. J Endocrinol. 2013 (Dec 9. [Epub ahead of print]).
71.
Zurück zum Zitat Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes. 2013;62:2595–604.PubMedCentralPubMedCrossRef Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes. 2013;62:2595–604.PubMedCentralPubMedCrossRef
72.
Zurück zum Zitat Kral JG. Vagal nerve function in obesity: therapeutic implications. World J Surg. 2009;33:1995–2006.PubMedCrossRef Kral JG. Vagal nerve function in obesity: therapeutic implications. World J Surg. 2009;33:1995–2006.PubMedCrossRef
73.
Zurück zum Zitat Hoyda TD, Smoth PM, Ferguson AV. Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int J Obes. 2009;33:S16–21.CrossRef Hoyda TD, Smoth PM, Ferguson AV. Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int J Obes. 2009;33:S16–21.CrossRef
74.
Zurück zum Zitat Thorens B, Larsen P. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care. 2004;7:471–8.PubMedCrossRef Thorens B, Larsen P. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care. 2004;7:471–8.PubMedCrossRef
Metadaten
Titel
Effects of GLP-1 on appetite and weight
verfasst von
Meera Shah
Adrian Vella
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 3/2014
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-014-9289-5

Weitere Artikel der Ausgabe 3/2014

Reviews in Endocrine and Metabolic Disorders 3/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.