Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 1/2017

27.01.2017

X-linked hypophosphatemia and growth

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

X-Linked hypophosphatemia (XLH) is the most common form of hereditary rickets caused by loss-of function mutations in the PHEX gene. XLH is characterized by hypophosphatemia secondary to renal phosphate wasting, inappropriately low concentrations of 1,25 dihydroxyvitamin D and high circulating levels of fibroblast growth factor 23 (FGF23). Short stature and rachitic osseous lesions are characteristic phenotypic findings of XLH although the severity of these manifestations is highly variable among patients. The degree of growth impairment is not dependent on the magnitude of hypophosphatemia or the extent of legs´ bowing and height is not normalized by chronic administration of phosphate supplements and 1α hydroxyvitamin D derivatives. Treatment with growth hormone accelerates longitudinal growth rate but there is still controversy regarding the potential risk of increasing bone deformities and body disproportion. Treatments aimed at blocking FGF23 action are promising, but information is lacking on the consequences of counteracting FGF23 during the growing period. This review summarizes current knowledge on phosphorus metabolism in XLH, presents updated information on XLH and growth, including the effects of FGF23 on epiphyseal growth plate of the Hyp mouse, an animal model of the disease, and discusses growth hormone and novel FGF23 related therapies.
Literatur
1.
Zurück zum Zitat Santos F, Fuente R, Mejia N, Mantecon L, Gil-Peña H, Ordoñez FA. Hypophosphatemia and growth. Pediatric Nephrology. 2013;28:595–603.CrossRefPubMed Santos F, Fuente R, Mejia N, Mantecon L, Gil-Peña H, Ordoñez FA. Hypophosphatemia and growth. Pediatric Nephrology. 2013;28:595–603.CrossRefPubMed
2.
Zurück zum Zitat Wagner CA, Rubio-Aliaga I, Biber J, Hernando N. Genetic diseases of renal phosphate handling. Nephrol Dial Transplant England. 2014;29:45–54.CrossRef Wagner CA, Rubio-Aliaga I, Biber J, Hernando N. Genetic diseases of renal phosphate handling. Nephrol Dial Transplant England. 2014;29:45–54.CrossRef
3.
Zurück zum Zitat Biber J, Stieger B, Stange G, Murer H. Isolation of renal proximal tubular brush-border membranes. Nature Protocols England. 2007;2:1356–9.CrossRef Biber J, Stieger B, Stange G, Murer H. Isolation of renal proximal tubular brush-border membranes. Nature Protocols England. 2007;2:1356–9.CrossRef
4.
Zurück zum Zitat Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. American Journal of Physiology. Renal Physiology. 2010;299:285–96.CrossRef Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. American Journal of Physiology. Renal Physiology. 2010;299:285–96.CrossRef
5.
Zurück zum Zitat Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC. The Na + −pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary pi. American Journal of Physiology. Renal Physiology. 2009;296:691–9.CrossRef Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC. The Na + −pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary pi. American Journal of Physiology. Renal Physiology. 2009;296:691–9.CrossRef
6.
Zurück zum Zitat Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney International. 2006;70:1548–59.CrossRefPubMed Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney International. 2006;70:1548–59.CrossRefPubMed
7.
Zurück zum Zitat Brenza HL, Kimmel-Jehan C, Jehan F, Shinki T, Wakino S, Anazawa H, Suda T, DeLuca HF. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter. Proceedings of the National Academy of Sciences. 1998;95:1387–91.CrossRef Brenza HL, Kimmel-Jehan C, Jehan F, Shinki T, Wakino S, Anazawa H, Suda T, DeLuca HF. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter. Proceedings of the National Academy of Sciences. 1998;95:1387–91.CrossRef
8.
Zurück zum Zitat Kogawa M, Findlay DM, Anderson PH, Ormsby R, Vincent C, Morris HA, Atkins GJ. Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology. 2010;151:4613–25.CrossRefPubMed Kogawa M, Findlay DM, Anderson PH, Ormsby R, Vincent C, Morris HA, Atkins GJ. Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology. 2010;151:4613–25.CrossRefPubMed
9.
Zurück zum Zitat Liu S, Zhou J, Tang W, Menard R, Feng JQ, Quarles LD. Pathogenic role of Fgf23 in Dmp1-null mice. American Journal of Physiology. Endocrinology and Metabolism. 2008;295:E254–61.CrossRefPubMedPubMedCentral Liu S, Zhou J, Tang W, Menard R, Feng JQ, Quarles LD. Pathogenic role of Fgf23 in Dmp1-null mice. American Journal of Physiology. Endocrinology and Metabolism. 2008;295:E254–61.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Ubaidus S, Li M, Sultana S, de Freitas PHL, Oda K, Maeda T, Takagi R, Amizuka N. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. Journal of Electron Microscopy. 2009;58:381–92.CrossRefPubMed Ubaidus S, Li M, Sultana S, de Freitas PHL, Oda K, Maeda T, Takagi R, Amizuka N. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. Journal of Electron Microscopy. 2009;58:381–92.CrossRefPubMed
11.
12.
Zurück zum Zitat Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Jüppner H, Jonsson KB. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145:3087–94.CrossRefPubMed Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Jüppner H, Jonsson KB. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145:3087–94.CrossRefPubMed
13.
14.
Zurück zum Zitat Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.CrossRefPubMed Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.CrossRefPubMed
15.
Zurück zum Zitat Toro CL. Rol de Klotho y FGF23 en la regulación de fosfato y calcio plasmático. Rev Hosp Clin Univ Chile. 2010;23:25–32. Toro CL. Rol de Klotho y FGF23 en la regulación de fosfato y calcio plasmático. Rev Hosp Clin Univ Chile. 2010;23:25–32.
16.
Zurück zum Zitat Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. The Journal of Biological Chemistry. 2006;281:6120–3.CrossRefPubMedPubMedCentral Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. The Journal of Biological Chemistry. 2006;281:6120–3.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Farrow EG, Summers LJ, Schiavi SC, McCormick JA, Ellison DH, White KE. Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the hyp mutation. The Journal of Endocrinology. 2010;207:67–75.CrossRefPubMedPubMedCentral Farrow EG, Summers LJ, Schiavi SC, McCormick JA, Ellison DH, White KE. Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the hyp mutation. The Journal of Endocrinology. 2010;207:67–75.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Review of Development Biology. 2015;4:215–66. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Review of Development Biology. 2015;4:215–66.
19.
Zurück zum Zitat Sopjani M, Rinnerthaler M, Almilaji A, Ahmeti S, Dermaku-Sopjani M. Regulation of cellular transport by klotho protein. Current Protein & Peptide Science. 2014;15:828–35.CrossRef Sopjani M, Rinnerthaler M, Almilaji A, Ahmeti S, Dermaku-Sopjani M. Regulation of cellular transport by klotho protein. Current Protein & Peptide Science. 2014;15:828–35.CrossRef
21.
Zurück zum Zitat Webster R, Sheriff S, Faroqui R, Siddiqui F, Hawse JR, Amlal H. Klotho/fibroblast growth factor 23- and PTH-independent estrogen receptor-alpha-mediated direct downregulation of NaPi-IIa by estrogen in the mouse kidney. American Journal of Physiology. Renal Physiology. 2016;311:F249–59.CrossRefPubMedPubMedCentral Webster R, Sheriff S, Faroqui R, Siddiqui F, Hawse JR, Amlal H. Klotho/fibroblast growth factor 23- and PTH-independent estrogen receptor-alpha-mediated direct downregulation of NaPi-IIa by estrogen in the mouse kidney. American Journal of Physiology. Renal Physiology. 2016;311:F249–59.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Dermaku-Sopjani M, Sopjani M, Saxena A, Shojaiefard M, Bogatikov E, Alesutan I, Eichenmüller M, Lang F. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of klotho. Cellular Physiology and Biochemistry. 2011;28:251–8.CrossRefPubMed Dermaku-Sopjani M, Sopjani M, Saxena A, Shojaiefard M, Bogatikov E, Alesutan I, Eichenmüller M, Lang F. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of klotho. Cellular Physiology and Biochemistry. 2011;28:251–8.CrossRefPubMed
23.
Zurück zum Zitat Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabeshima Y. Alpha-klotho as a regulator of calcium homeostasis. Science. 2007;316:1615–8.CrossRefPubMed Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabeshima Y. Alpha-klotho as a regulator of calcium homeostasis. Science. 2007;316:1615–8.CrossRefPubMed
24.
Zurück zum Zitat Chang Q, Hoefs S, Van Der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005;310:490–3.CrossRefPubMed Chang Q, Hoefs S, Van Der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005;310:490–3.CrossRefPubMed
25.
Zurück zum Zitat Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, Erben RG. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. The EMBO Journal. 2014;33(3):229–46.PubMedPubMedCentral Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, Erben RG. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. The EMBO Journal. 2014;33(3):229–46.PubMedPubMedCentral
26.
Zurück zum Zitat Burnett CH, Dent CE, Harper C, Warland BJ. Vitamin d-resistant rickets. Analysis of twenty-four pedigrees with hereditary and sporadic cases. The American Journal of Medicine. 1964;36:222–32.CrossRefPubMed Burnett CH, Dent CE, Harper C, Warland BJ. Vitamin d-resistant rickets. Analysis of twenty-four pedigrees with hereditary and sporadic cases. The American Journal of Medicine. 1964;36:222–32.CrossRefPubMed
27.
Zurück zum Zitat Ramussen H, Anast C. Familial hypophosphatemic rickets and vitamin D-dependent rickets. In: Wyngaarden JB, Fredericson DS, Goldstain JL, Brrown MS, editors. The Metabolic Basis of Inherit Disease. N Y: McGraw-Hill; 1983. p. 1743–73. Ramussen H, Anast C. Familial hypophosphatemic rickets and vitamin D-dependent rickets. In: Wyngaarden JB, Fredericson DS, Goldstain JL, Brrown MS, editors. The Metabolic Basis of Inherit Disease. N Y: McGraw-Hill; 1983. p. 1743–73.
28.
Zurück zum Zitat Collins JF, Bulus N, Ghishan FK. Sodium-phosphate transporter adaptation to dietary phosphate deprivation in normal and hypophosphatemic mice. American Journal of Physics. 1995;268:917–24. Collins JF, Bulus N, Ghishan FK. Sodium-phosphate transporter adaptation to dietary phosphate deprivation in normal and hypophosphatemic mice. American Journal of Physics. 1995;268:917–24.
29.
Zurück zum Zitat Eicher EM, Southard JL, Scriver CR, Glorieux FH. Hypophosphatemia - mouse model for human familial hypophosphatemic (vitamin-D-resistant) rickets. Proceedings of the National Academy of Sciences. 1976;73:4667–71.CrossRef Eicher EM, Southard JL, Scriver CR, Glorieux FH. Hypophosphatemia - mouse model for human familial hypophosphatemic (vitamin-D-resistant) rickets. Proceedings of the National Academy of Sciences. 1976;73:4667–71.CrossRef
30.
Zurück zum Zitat Strom TM, Francis F, Lorenz B, Böddrich A, Econs MJ, Lehrach H, Meitinger T. Pex gene deletions in Gy and hyp mice provide mouse models for X-linked hypophosphatemia. Human Molecular Genetics. 1997;6:165–71.CrossRefPubMed Strom TM, Francis F, Lorenz B, Böddrich A, Econs MJ, Lehrach H, Meitinger T. Pex gene deletions in Gy and hyp mice provide mouse models for X-linked hypophosphatemia. Human Molecular Genetics. 1997;6:165–71.CrossRefPubMed
31.
Zurück zum Zitat Tenenhouse H. X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrology, Dialysis, Transplantation. 1999;333–41 Tenenhouse H. X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrology, Dialysis, Transplantation. 1999;333–41
32.
Zurück zum Zitat Tenenhouse HS, Beck L. Renal Na + −phosphate cotransporter gene expression in X-linked hyp and Gy mice. Kidney International. 1996;49:1027–32.CrossRefPubMed Tenenhouse HS, Beck L. Renal Na + −phosphate cotransporter gene expression in X-linked hyp and Gy mice. Kidney International. 1996;49:1027–32.CrossRefPubMed
33.
Zurück zum Zitat Razali NN, Hwu TT, Thilakavathy K. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets. Journal of Pediatric Endocrinology & Metabolism. 2015;28:1009–17.CrossRef Razali NN, Hwu TT, Thilakavathy K. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets. Journal of Pediatric Endocrinology & Metabolism. 2015;28:1009–17.CrossRef
34.
Zurück zum Zitat The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genetics. 1995;11:130–6.CrossRef The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genetics. 1995;11:130–6.CrossRef
35.
Zurück zum Zitat Dixon PH, Christie PT, Wooding C, Trump D, Grieff M, Holm I, Gertner JM, Schmidtke J, Shah B, Shaw N, Smith C, Tau C, Schlessinger D, Whyte MP, Thakker RV. Mutational analysis of PHEX Gene in X-liked hypophosphatemia. The Journal of Clinical Endocrinology and Metabolism. 2014;83:3615–23. Dixon PH, Christie PT, Wooding C, Trump D, Grieff M, Holm I, Gertner JM, Schmidtke J, Shah B, Shaw N, Smith C, Tau C, Schlessinger D, Whyte MP, Thakker RV. Mutational analysis of PHEX Gene in X-liked hypophosphatemia. The Journal of Clinical Endocrinology and Metabolism. 2014;83:3615–23.
36.
Zurück zum Zitat Beck L, Soumounou Y, Martel J, Krishnamurthy G, Gauthier C, Goodyer CG, Tenenhouse HS. Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice. The Journal of Clinical Investigation. 1997;99:1200.CrossRefPubMedPubMedCentral Beck L, Soumounou Y, Martel J, Krishnamurthy G, Gauthier C, Goodyer CG, Tenenhouse HS. Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice. The Journal of Clinical Investigation. 1997;99:1200.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Bastepe M, Juppner H. Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation. Reviews in Endocrine & Metabolic Disorders. 2008;9:171–80.CrossRef Bastepe M, Juppner H. Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation. Reviews in Endocrine & Metabolic Disorders. 2008;9:171–80.CrossRef
38.
Zurück zum Zitat Meyer RAJ, Tenenhouse HS, Meyer MH, Klugerman AH. The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy. Journal of Bone and Mineral Research. 1989;4:523–32.CrossRefPubMed Meyer RAJ, Tenenhouse HS, Meyer MH, Klugerman AH. The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy. Journal of Bone and Mineral Research. 1989;4:523–32.CrossRefPubMed
39.
Zurück zum Zitat Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K. Differential effects of Npt2a gene ablation and X-linked hyp mutation on renal expression of Npt2c. American Journal of Physiology. Renal Physiology. 2003;285:1271–8.CrossRef Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K. Differential effects of Npt2a gene ablation and X-linked hyp mutation on renal expression of Npt2c. American Journal of Physiology. Renal Physiology. 2003;285:1271–8.CrossRef
40.
Zurück zum Zitat Liu S, Tang W, Zhou J, Vierthaler L, Quarles LD. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in hyp mice. American Journal of Physiology. Endocrinology and Metabolism. 2007;293:1636–44.CrossRef Liu S, Tang W, Zhou J, Vierthaler L, Quarles LD. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in hyp mice. American Journal of Physiology. Endocrinology and Metabolism. 2007;293:1636–44.CrossRef
41.
Zurück zum Zitat Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. The Journal of Clinical Endocrinology and Metabolism. 2002;87:4957–60.CrossRefPubMed Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. The Journal of Clinical Endocrinology and Metabolism. 2002;87:4957–60.CrossRefPubMed
42.
Zurück zum Zitat Chanakul A, Zhang MY, Louw A, Armbrecht HJ, Miller WL, Portale AA, Perwad F. FGF-23 regulates CYP27B1 transcription in the kidney and in extra-renal tissues. PLoS One. 2013;8:72816.CrossRef Chanakul A, Zhang MY, Louw A, Armbrecht HJ, Miller WL, Portale AA, Perwad F. FGF-23 regulates CYP27B1 transcription in the kidney and in extra-renal tissues. PLoS One. 2013;8:72816.CrossRef
43.
Zurück zum Zitat Reid IR, Murphy WA, Hardy DC, Teitelbaum SL, Bergfeld MA, Whyte MP. X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. The American Journal of Medicine. 1991;90:63–9.CrossRefPubMed Reid IR, Murphy WA, Hardy DC, Teitelbaum SL, Bergfeld MA, Whyte MP. X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. The American Journal of Medicine. 1991;90:63–9.CrossRefPubMed
44.
Zurück zum Zitat Klaus SSB, Lars B. Phenotype presentation of hypophosphatemic rickets in adults. Calcified Tissue International. 2010;87:108–19.CrossRef Klaus SSB, Lars B. Phenotype presentation of hypophosphatemic rickets in adults. Calcified Tissue International. 2010;87:108–19.CrossRef
45.
Zurück zum Zitat Weber TJ, Liu S, Indridason OS, Quarles LD. Serum FGF23 levels in normal and disordered phosphorus homeostasis. Journal of Bone and Mineral Research. 2003;18:1227–34.CrossRefPubMed Weber TJ, Liu S, Indridason OS, Quarles LD. Serum FGF23 levels in normal and disordered phosphorus homeostasis. Journal of Bone and Mineral Research. 2003;18:1227–34.CrossRefPubMed
46.
Zurück zum Zitat Schutt SM, Schumacher M, Holterhus PM, Felgenhauer S, Hiort O. Effect of GH replacement therapy in two male siblings with combined X-linked hypophosphatemia and partial GH deficiency. European Journal of Endocrinology. 2003;149:317–21.CrossRefPubMed Schutt SM, Schumacher M, Holterhus PM, Felgenhauer S, Hiort O. Effect of GH replacement therapy in two male siblings with combined X-linked hypophosphatemia and partial GH deficiency. European Journal of Endocrinology. 2003;149:317–21.CrossRefPubMed
47.
Zurück zum Zitat Mäkitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. The Journal of Clinical Endocrinology and Metabolism. 2003;88:3591–7.CrossRefPubMed Mäkitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. The Journal of Clinical Endocrinology and Metabolism. 2003;88:3591–7.CrossRefPubMed
48.
Zurück zum Zitat Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G. Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. The Journal of Pediatrics. 2001;138:236–43.CrossRefPubMed Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G. Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. The Journal of Pediatrics. 2001;138:236–43.CrossRefPubMed
49.
Zurück zum Zitat Whyte MP, Schranck FW, Armamento-Villareal R. X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. The Journal of Clinical Endocrinology and Metabolism. 1996;81:4075–80.PubMed Whyte MP, Schranck FW, Armamento-Villareal R. X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. The Journal of Clinical Endocrinology and Metabolism. 1996;81:4075–80.PubMed
50.
Zurück zum Zitat Živičnjak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, Schumacher M, Pyper A, Schröder C, Brämswig J, Haffner D. Hypophosphatemic Rickets Study Group of Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie. Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatric Nephrology. 2011;26:223–31.CrossRefPubMed Živičnjak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, Schumacher M, Pyper A, Schröder C, Brämswig J, Haffner D. Hypophosphatemic Rickets Study Group of Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie. Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatric Nephrology. 2011;26:223–31.CrossRefPubMed
51.
Zurück zum Zitat Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, Kamenicky P, Nevoux J, Prié D, Rothenbuhler A, Wicart P, Harvengt P. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocrine Connections. 2014;3:13–30.CrossRef Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, Kamenicky P, Nevoux J, Prié D, Rothenbuhler A, Wicart P, Harvengt P. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocrine Connections. 2014;3:13–30.CrossRef
52.
Zurück zum Zitat Jehan F, Gaucher C, Nguyen TM, Walrant-Debray O, Lahlou N, Sinding C, Déchaux M, Garabédian M. Vitamin D receptor genotype in hypophosphatemic rickets as a predictor of growth and response to treatment. The Journal of Clinical Endocrinology and Metabolism. 2008;93:4672–82.CrossRefPubMed Jehan F, Gaucher C, Nguyen TM, Walrant-Debray O, Lahlou N, Sinding C, Déchaux M, Garabédian M. Vitamin D receptor genotype in hypophosphatemic rickets as a predictor of growth and response to treatment. The Journal of Clinical Endocrinology and Metabolism. 2008;93:4672–82.CrossRefPubMed
53.
Zurück zum Zitat McNair, Stickler. Growth in familial hypophosphatemic vitamin-D-resistant rickets. NEJM. 1969;281:511–6.CrossRef McNair, Stickler. Growth in familial hypophosphatemic vitamin-D-resistant rickets. NEJM. 1969;281:511–6.CrossRef
54.
Zurück zum Zitat Oliveri MB, Cassinelli H, Bergada C, Mautalen CA. Bone mineral density of the spine and radius shaft in children with X-linked hypophosphatemic rickets (XLH). Bone and Mineral. 1991;12:91–100.CrossRefPubMed Oliveri MB, Cassinelli H, Bergada C, Mautalen CA. Bone mineral density of the spine and radius shaft in children with X-linked hypophosphatemic rickets (XLH). Bone and Mineral. 1991;12:91–100.CrossRefPubMed
55.
Zurück zum Zitat Friedman NE, Lobaugh B, Drezner MK. Effects of calcitriol and phosphorus therapy on the growth of patients with X-linked hypophosphatemia. The Journal of Clinical Endocrinology and Metabolism. 1993;76:839–44.PubMed Friedman NE, Lobaugh B, Drezner MK. Effects of calcitriol and phosphorus therapy on the growth of patients with X-linked hypophosphatemia. The Journal of Clinical Endocrinology and Metabolism. 1993;76:839–44.PubMed
56.
Zurück zum Zitat Qiu ZQ, Travers R, Rauch F, Glorieux FH, Scriver CR, Tenenhouse HS. Effect of gene dose and parental origin on bone histomorphometry in X-linked hyp mice. Bone. 2004;34:134–9.CrossRefPubMed Qiu ZQ, Travers R, Rauch F, Glorieux FH, Scriver CR, Tenenhouse HS. Effect of gene dose and parental origin on bone histomorphometry in X-linked hyp mice. Bone. 2004;34:134–9.CrossRefPubMed
57.
Zurück zum Zitat Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique. 1994;28:505–19.CrossRefPubMed Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique. 1994;28:505–19.CrossRefPubMed
58.
Zurück zum Zitat Liu S, Guo R, Quarles LD. Cloning and characterization of the proximal murine Phex promoter. Endocrinology. 2001;142:3987–95.CrossRefPubMed Liu S, Guo R, Quarles LD. Cloning and characterization of the proximal murine Phex promoter. Endocrinology. 2001;142:3987–95.CrossRefPubMed
59.
Zurück zum Zitat Miao D, Bai X, Panda D, McKee M, Karaplis A, Goltzman D. Osteomalacia in hyp mice is associated with abnormal Phex expression and with altered bone matrix protein expression and deposition. Endocrinology. 2001;142:926–39.CrossRefPubMed Miao D, Bai X, Panda D, McKee M, Karaplis A, Goltzman D. Osteomalacia in hyp mice is associated with abnormal Phex expression and with altered bone matrix protein expression and deposition. Endocrinology. 2001;142:926–39.CrossRefPubMed
60.
Zurück zum Zitat Miao D, Bai X, Panda DK, Karaplis AC, Goltzman D, McKee MD. Cartilage abnormalities are associated with abnormal Phex expression and with altered matrix protein and MMP-9 localization in hyp mice. Bone. 2004;34:638–47.CrossRefPubMed Miao D, Bai X, Panda DK, Karaplis AC, Goltzman D, McKee MD. Cartilage abnormalities are associated with abnormal Phex expression and with altered matrix protein and MMP-9 localization in hyp mice. Bone. 2004;34:638–47.CrossRefPubMed
61.
Zurück zum Zitat Wu S, Levenson A, Kharitonenkov A, De Luca F. Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. The Journal of Biological Chemistry. 2012;287:26060–7.CrossRefPubMedPubMedCentral Wu S, Levenson A, Kharitonenkov A, De Luca F. Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. The Journal of Biological Chemistry. 2012;287:26060–7.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Gunther T, Chen Z-F, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature. 2000;406:199–203.CrossRefPubMed Gunther T, Chen Z-F, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature. 2000;406:199–203.CrossRefPubMed
63.
Zurück zum Zitat Tu Q, Pi M, Karsenty G, Simpson L, Liu S, Quarles LD. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. The Journal of Clinical Investigation. 2003;111:1029–37.CrossRefPubMedPubMedCentral Tu Q, Pi M, Karsenty G, Simpson L, Liu S, Quarles LD. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. The Journal of Clinical Investigation. 2003;111:1029–37.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proceedings of the National Academy of Sciences. 2005;102:9637–42.CrossRef Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proceedings of the National Academy of Sciences. 2005;102:9637–42.CrossRef
65.
Zurück zum Zitat Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in hyp mice. American Journal of Physiology. Endocrinology and Metabolism. 2006;291:38–49.CrossRef Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in hyp mice. American Journal of Physiology. Endocrinology and Metabolism. 2006;291:38–49.CrossRef
66.
Zurück zum Zitat Ovejero D, Lim YH, Boyce AM, Gafni RI, McCarthy E, Nguyen TA, Eichenfield LF, DeKlotz CM, Guthrie LC, Tosi LL, Thornton PS, Choate KA, Collins MT. Cutaneous skeletal hypophosphatemia syndrome: clinical spectrum, natural history, and treatment. Osteoporosis International. 2016;27:3615–26.CrossRefPubMed Ovejero D, Lim YH, Boyce AM, Gafni RI, McCarthy E, Nguyen TA, Eichenfield LF, DeKlotz CM, Guthrie LC, Tosi LL, Thornton PS, Choate KA, Collins MT. Cutaneous skeletal hypophosphatemia syndrome: clinical spectrum, natural history, and treatment. Osteoporosis International. 2016;27:3615–26.CrossRefPubMed
67.
Zurück zum Zitat Goodyer PR, Kronick JB, Jequier S, Reade TM, Scriver CR. Nephrocalcinosis and its relationship to treatment of hereditary rickets. The Journal of Pediatrics. 1987;111:700–4.CrossRefPubMed Goodyer PR, Kronick JB, Jequier S, Reade TM, Scriver CR. Nephrocalcinosis and its relationship to treatment of hereditary rickets. The Journal of Pediatrics. 1987;111:700–4.CrossRefPubMed
68.
Zurück zum Zitat Sanchez CP. Mineral metabolism and bone abnormalities in children with chronic renal failure. Reviews in Endocrine & Metabolic Disorders. 2008;9:131–7.CrossRef Sanchez CP. Mineral metabolism and bone abnormalities in children with chronic renal failure. Reviews in Endocrine & Metabolic Disorders. 2008;9:131–7.CrossRef
69.
Zurück zum Zitat Imel EA, DiMeglio LA, Hui SL, Carpenter TO, Econs MJ. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. The Journal of Clinical Endocrinology and Metabolism. 2010;95:1846–50.CrossRefPubMedPubMedCentral Imel EA, DiMeglio LA, Hui SL, Carpenter TO, Econs MJ. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. The Journal of Clinical Endocrinology and Metabolism. 2010;95:1846–50.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Nickolas TL, Jamal SA. Bone kidney interactions. Reviews in Endocrine & Metabolic Disorders. 2015;16:157–63.CrossRef Nickolas TL, Jamal SA. Bone kidney interactions. Reviews in Endocrine & Metabolic Disorders. 2015;16:157–63.CrossRef
71.
Zurück zum Zitat Wilson DM, Lee PD, Morris AH, Reiter EO, Gertner JM, Marcus R, Valerie E. Ron G. Growth hormone therapy in hypophosphatemic rickets. American Journal of Diseases of Children (1911). 1991;145:1165–70. Wilson DM, Lee PD, Morris AH, Reiter EO, Gertner JM, Marcus R, Valerie E. Ron G. Growth hormone therapy in hypophosphatemic rickets. American Journal of Diseases of Children (1911). 1991;145:1165–70.
72.
Zurück zum Zitat Cameron FJ, Sochett EB, Daneman A, Kooh SW. A trial of growth hormone therapy in well-controlled hypophosphataemic rickets. Clinical Endocrinology. 1999;50:577–82.CrossRefPubMed Cameron FJ, Sochett EB, Daneman A, Kooh SW. A trial of growth hormone therapy in well-controlled hypophosphataemic rickets. Clinical Endocrinology. 1999;50:577–82.CrossRefPubMed
73.
Zurück zum Zitat Haffner D, Nissel R, Wuhl E, Mehls O. Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics. 2004;113:593–6.CrossRef Haffner D, Nissel R, Wuhl E, Mehls O. Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics. 2004;113:593–6.CrossRef
74.
Zurück zum Zitat Roy P, Martel J, Tenenhouse H. Growth hormone normalizes renal 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression but not Na + −phosphate cotransporter (Npt2) mRNA in phosphate-deprived hyp mice. Journal of Bone and Mineral Research. 1997;12:1672–80.CrossRefPubMed Roy P, Martel J, Tenenhouse H. Growth hormone normalizes renal 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression but not Na + −phosphate cotransporter (Npt2) mRNA in phosphate-deprived hyp mice. Journal of Bone and Mineral Research. 1997;12:1672–80.CrossRefPubMed
75.
Zurück zum Zitat Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:6500–5.CrossRefPubMedPubMedCentral Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:6500–5.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney International. 2001;60:2079–86.CrossRefPubMed White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney International. 2001;60:2079–86.CrossRefPubMed
77.
Zurück zum Zitat Wöhrle S, Bonny O, Beluch N, Gaulis S, Stamm C, Scheibler M, Müller M, Kinzel B, Thuery A, Brueggen J, Hynes NE, Sellers WR, Hofmann F, Graus-Porta D. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. Journal of Bone and Mineral Research. 2011;26:2486–97.CrossRefPubMed Wöhrle S, Bonny O, Beluch N, Gaulis S, Stamm C, Scheibler M, Müller M, Kinzel B, Thuery A, Brueggen J, Hynes NE, Sellers WR, Hofmann F, Graus-Porta D. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. Journal of Bone and Mineral Research. 2011;26:2486–97.CrossRefPubMed
78.
Zurück zum Zitat Li H, Martin A, David V, Quarles LD. Compound deletion of Fgfr3 and Fgfr4 partially rescues the hyp mouse phenotype. American Journal of Physiology. Endocrinology and Metabolism. 2011;300:508–17.CrossRef Li H, Martin A, David V, Quarles LD. Compound deletion of Fgfr3 and Fgfr4 partially rescues the hyp mouse phenotype. American Journal of Physiology. Endocrinology and Metabolism. 2011;300:508–17.CrossRef
79.
Zurück zum Zitat Bai X, Miao D, Xiao S, Qiu D, St-Arnaud R, Petkovich M, Gupta A, Goltzman D, Karaplis AC. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. The Journal of Clinical Investigation. 2016;126:667–80.CrossRefPubMedPubMedCentral Bai X, Miao D, Xiao S, Qiu D, St-Arnaud R, Petkovich M, Gupta A, Goltzman D, Karaplis AC. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. The Journal of Clinical Investigation. 2016;126:667–80.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Wöhrle S, Henninger C, Bonny O, Thuery A, Beluch N, Hynes NE, Guagnano V, Sellers WR, Hofmann F, Kneissel M, Graus PD. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. Journal of Bone and Mineral Research. 2013;28:899–911.CrossRefPubMed Wöhrle S, Henninger C, Bonny O, Thuery A, Beluch N, Hynes NE, Guagnano V, Sellers WR, Hofmann F, Kneissel M, Graus PD. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. Journal of Bone and Mineral Research. 2013;28:899–911.CrossRefPubMed
81.
Zurück zum Zitat Du E, Xiao L, Hurley MM. FGF23 neutralizing antibody ameliorates hypophosphatemia and impaired FGF receptor signaling in kidneys of HMWFGF2 transgenic mice. Journal of Cellular Physiology. 2016; doi:10.1002/jcp.25458. Du E, Xiao L, Hurley MM. FGF23 neutralizing antibody ameliorates hypophosphatemia and impaired FGF receptor signaling in kidneys of HMWFGF2 transgenic mice. Journal of Cellular Physiology. 2016; doi:10.​1002/​jcp.​25458.
82.
Zurück zum Zitat Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. Journal of Bone and Mineral Research. 2009;24:1879–88.CrossRefPubMed Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. Journal of Bone and Mineral Research. 2009;24:1879–88.CrossRefPubMed
83.
Zurück zum Zitat Ranch D, Zhang MYH, Portale AA, Perwad F. Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in hyp mice. Journal of Bone and Mineral Research. 2011;26:1883–90.CrossRefPubMedPubMedCentral Ranch D, Zhang MYH, Portale AA, Perwad F. Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in hyp mice. Journal of Bone and Mineral Research. 2011;26:1883–90.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Zhang MYH, Ranch D, Pereira RC, Armbrecht HJ, Portale AA, Perwad F. Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (hyp) mice. Endocrinology. 2012;153:1806–16.CrossRefPubMedPubMedCentral Zhang MYH, Ranch D, Pereira RC, Armbrecht HJ, Portale AA, Perwad F. Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (hyp) mice. Endocrinology. 2012;153:1806–16.CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Imel EA, Zhang X, Ruppe MD, Weber TJ, Klausner MA, Ito T, Vergeire M, Humphrey JS, Glorieux FH, Portale AA, Insogna K, Peacock M, Carpenter TO. Prolonged correction of serum phosphorus in adults with X-linked hypophosphatemia using monthly doses of KRN23. The Journal of Clinical Endocrinology and Metabolism. 2015;100:2565–73.CrossRefPubMedPubMedCentral Imel EA, Zhang X, Ruppe MD, Weber TJ, Klausner MA, Ito T, Vergeire M, Humphrey JS, Glorieux FH, Portale AA, Insogna K, Peacock M, Carpenter TO. Prolonged correction of serum phosphorus in adults with X-linked hypophosphatemia using monthly doses of KRN23. The Journal of Clinical Endocrinology and Metabolism. 2015;100:2565–73.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, Kawakami T, Ito T, Zhang X, Humphrey J, Insogna KL, Peacock M. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. The Journal of Clinical Investigation. 2014;124:1587–97.CrossRefPubMedPubMedCentral Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, Kawakami T, Ito T, Zhang X, Humphrey J, Insogna KL, Peacock M. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. The Journal of Clinical Investigation. 2014;124:1587–97.CrossRefPubMedPubMedCentral
Metadaten
Titel
X-linked hypophosphatemia and growth
Publikationsdatum
27.01.2017
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 1/2017
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-017-9408-1

Weitere Artikel der Ausgabe 1/2017

Reviews in Endocrine and Metabolic Disorders 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.