Skip to main content

Advertisement

Log in

A comprehensive overview of elements in bioremediation

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation is an increasingly popular alternative to conventional methods for treating waste compounds and media with the possibility to degrade contaminants using natural microbial activity mediated by different consortia of microbial strains. Many studies about bioremediation have been reported and the scientific literature has revealed the progressive emergence of various bioremediation techniques. In this review, we discuss the various in situ and ex situ bioremediation techniques and elaborate on the anaerobic digestion technology, phytoremediation, hyperaccumulation, composting and biosorption for their effectiveness in the biotreatment, stabilization and eventually overall remediation of contaminated strata and environments. The review ends with a note on the recent advances genetic engineering and nanotechnology have had in improving bioremediation. Case studies have also been extensively revisited to support the discussions on biosorption of heavy metals, gene probes used in molecular diagnostics, bioremediation studies of contaminants in vadose soils, bioremediation of oil contaminated soils, bioremediation of contaminants from mining sites, air sparging, slurry phase bioremediation, phytoremediation studies for pollutants and heavy metal hyperaccumulators, and vermicomposting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. According to the United States Environmental Protection Agency (US EPA) (1999), the term pesticide is a broad nonspecific term covering a large number of substances including, insecticides, herbicides and fungicides, ‘though often misunderstood to refer only to insecticides’.

  2. A biobed in its simplest form is a rectangular lined pit, 1–1.3 m deep, filled with a mixture of topsoil, peat-free compost and straw in a ratio of 1:1:2, respectively and turfed over. Biobeds filter out pesticides and use enhanced microbial activity to break them down.

References

  • Abid N, Chamkha M, Godon JJ, Sayadi S (2007) Involvement of microbial populations during the composting of olive mill wastewater sludge. Environ Technol 28:751–760

    CAS  Google Scholar 

  • Aboul-Kassim TAT, Simoneit BRT (2001) Microbial transformations at aqueous-solid phase interfaces: a bioremediation approach. In: Aboul-Kassim TAT, Simoneit BRT (eds) The handbook of environmental chemistry, vol. 5, part E, pollutant-solid phase interactions: mechanism, chemistry and modeling. Springer, Berlin

    Google Scholar 

  • Abraham W-R, Nogales B, Golyshin PN, Pieper DT, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253

    CAS  Google Scholar 

  • Adebusoye SA, Ilori MO, Picardal FW, Amund OO (2008) Cometabolic degradation of polychlorinated biphenyls (PCBs) by axenic cultures of Ralstonia sp. strain SA-5 and Pseudomonas sp. strain SA-6 obtained from Nigerian contaminated soils. World J Microbiol Biotechnol 24:61–68

    CAS  Google Scholar 

  • Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201

    CAS  Google Scholar 

  • Agarry SE, Durojaiye AO, Solomon BO (2008) Microbial degradation of phenols: a review. Int J Environ Pollut 32:12–28

    CAS  Google Scholar 

  • Agnew JM, Leonard JJ (2003) Literature review—the physical properties of compost. Compost Sci Util 11:238–264

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    CAS  Google Scholar 

  • Ahuja R, Kumar A (2003) Metabolism of DDT [1, 1, 1-Trichloro-2, 2-bis(4-chlorophenyl)ethane] by Alcaligenes denitrificans ITRC-4 under aerobic and anaerobic conditions. Curr Microbiol 46:65–69

    CAS  Google Scholar 

  • Aitken MD, Walters GW, Crunk PL, Willis JL, Farrell JB, Schafer PL, Arnett C, Turner BG (2005) Laboratory evaluation of thermophilic-anaerobic digestion to produce Class A biosolids. 1. Stabilization performance of a continuous-flow reactor at low residence time. Water Environ Res 77:3019–3027

    CAS  Google Scholar 

  • Akerlund T, Nordstrom K, Bernander R (1995) Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J Bacteriol 177:6791–6797

    CAS  Google Scholar 

  • Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108:85–94

    CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    CAS  Google Scholar 

  • Al-Daher R, Al-Awadhi N, Yateem A, Balba MT, ElNawawy A (2001) Compost soil piles for treatment of oil-contaminated soil. Soil Sediment Contam An Int J 10:197–209

    CAS  Google Scholar 

  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032

    CAS  Google Scholar 

  • Amir S, Hafidi M, Merlina G, Hamdi H, Jouraiphy A, El Gharous M, Revel JC (2005) Fate of phthalic acid esters during composting of both lagooning and activated sludges. Process Biochem 40:2183–2190

    CAS  Google Scholar 

  • Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    CAS  Google Scholar 

  • Anastas PT, Lankey RL (2000) Life-cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 6:289–295

    Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry, theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Anastas PT, Zimmerman JB (2003) Design through the 12 Principles of green engineering. Environ Sci Technol 37:94–101

    Google Scholar 

  • Andersen RG, Booth EC, Marr LC, Widdowson MA, Novak JT (2008) Volatilization and biodegradation of naphthalene in the Vadose Zone impacted by phytoremediation. Environ Sci Technol 42(7):2575–2581

    CAS  Google Scholar 

  • Andreas KA, Ekelund NGA (2005) Effects on motile factors and cell growth of euglena gracilis after exposure to wood ash solution; assessment of toxicity, nutrient availability and pH-dependency. Water Air Soil Pollut 162:353–368

    CAS  Google Scholar 

  • Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzym Microbiol Technol 37:487–496

    CAS  Google Scholar 

  • Antizar-Ladislao B, Galil NI (2003) Simulation of bioremediation of chlorophenols in a sandy aquifer. Water Res 37:238–244

    CAS  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real J, Beck AJ (2005) In-vessel composting-bioremediation of aged coal tar soil: effect of temperature and soil/green waste amendment ratio. Environ Int 31:173–178

    CAS  Google Scholar 

  • Apak R, Tutem E, Hugul M, Hizal J (1998) Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res 32:430–440

    CAS  Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    CAS  Google Scholar 

  • Aravindhan R, Madhan B, Raghava Rao J, Unni Nair B (2004) Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed. J Chem Technol Biotechnol 79:1251–1258

    CAS  Google Scholar 

  • Arnaiz C, Gutierrez JC, Lebrato J (2006) Biomass stabilization in the anaerobic digestion of wastewater sludges. Bioresour Technol 97:1179–1184

    CAS  Google Scholar 

  • Arshad M, Zafar MN, Younis S, Nadeem R (2008) The use of Neem biomass for the biosorption of zinc from aqueous solutions. J Hazard Mater 157:534–540

    CAS  Google Scholar 

  • Artola A, Barrena R, Font X, Gabriel D, Gea T, Mudhoo A, Sánchez A (2009) Composting from a sustainable point of view: respirometric indices as a key parameter. In: Martín-Gil J (ed) Compost II, dynamic soil dynamic plant, vol 3, pp 1–16

  • Aspray TJ, Carvalho DJC, Philip JC (2007) Application of soil slurry respirometry to optimise and subsequently monitor ex situ bioremediation of hydrocarbon-contaminated soils. Int Biodeterior Biodegrad 60:279–284

    CAS  Google Scholar 

  • Assinder SJ, Williams PA (1990) The TOL plasmids: determinants of the catabolism’s of toluene and the xylenes. Adv Microb Physiol 31:1–69

    CAS  Google Scholar 

  • Atagana HI (2008) Compost bioremediation of hydrocarbon-contaminated soil inoculated with organic manure. Afr J Biotechnol 7:1516–1525

    Google Scholar 

  • Atlante A, Giannattasio S, Bobba A, Gagliardi S, Petragallo V, Calissano P, Marra E, Passarella S (2005) An increase in the ATP levels occurs in cerebellar granule cells en route to apoptosis in which ATP derives from both oxidative phosphorylation and anaerobic glycolysis. Biochim Biophys Acta (BBA)—Bioenergetics 1708:50–62

    CAS  Google Scholar 

  • Azab MS, Peterson PJ (1989) The removal of Cd from wastewater by the use of biological sorbent. Water Sci Technol 21:1705–1706

    CAS  Google Scholar 

  • Azadi H, Ho P (2010) Genetically modified and organic crops in developing countries: a review of options for food security. Biotechnol Adv 28:160–168

    Google Scholar 

  • Azcón R, del Carmen Perálvarez M, Biró B, Roldán A, Ruíz-Lozano JM (2009) Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Appl Soil Ecol 41:168–177

    Google Scholar 

  • Baczynski TP, Pleissner D (2010) Bioremediation of chlorinated pesticide-contaminated soil using anaerobic sludges and surfactant addition. J Environ Sci Health B 45:82–88

    CAS  Google Scholar 

  • Baek KH, Yoon BD, Cho DH, Kim BH, Oh HM, Kim HS (2009) Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil. J Microbiol Biotechnol 19:339–345

    CAS  Google Scholar 

  • Bai M-D, Chao Y-C, Lin Y-H, Lu W-C, Lee H-T (2009a) Immobilized biofilm used as seeding source in batch biohydrogen fermentation. Renew Energy 34:1969–1972

    CAS  Google Scholar 

  • Bai FW, Zhang W, Zhong J-J (2009b) Special section on biotechnology for the sustainability of human society. Biotechnol Adv 26:939

    Google Scholar 

  • Baker KH, Herson DS (1994) Bioremediation. McGraw-Hill Inc, New York

    Google Scholar 

  • Baker DB, Conradi MS, Norberg RE (1994) Explanation of the high-temperature relaxation anomaly in a metal-hydrogen system. Phys Rev B 49:11773–11782

    CAS  Google Scholar 

  • Bali G, Rallapalli R, Sullia SB, Shiralipour A, Kasturi S (2002) Environmental biotechnology: concepts, definitions and criteria. In: Nangia SB (ed) Environmental biotechnology. A.P.H. Publishing Corporation, New Delhi, pp 1–29

    Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    CAS  Google Scholar 

  • Bañuelos G, Lin Z-Q (2005) Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxicol Environ Saf 62:309–316

    Google Scholar 

  • Bardi L, Mattei A, Steffan S, Marzona M (2000) Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability. Enzym Microb Technol 27:709–713

    CAS  Google Scholar 

  • Barker AV, Bryson GM (2002) Bioremediation of heavy metals and organic toxicants by composting. Sci World J 2:407–420

    CAS  Google Scholar 

  • Barnabé S, Brar SK, Tyagi RD, Beauchesne I, Surampalli RY (2009) Pre-treatment and bioconversion of wastewater sludge to value-added products—Fate of endocrine disrupting compounds. Sci Total Environ 407:1471–1488

    Google Scholar 

  • Baxter J, Cummings SP (2006) The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie van Leeuwenhoek 90:1–17

    CAS  Google Scholar 

  • Baysal Z, Çinar E, Bulut E, Alkan H, Dogru M (2009) Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. J Hazard Mater 161:62–67

    CAS  Google Scholar 

  • Beck AJ, Jones KC (1995) Kinetic constraints on the Insitu remediation of soils contaminated with organic chemicals. Environ Sci Pollut Res 2:244–252

    CAS  Google Scholar 

  • Beltrame MO, De Marco SG, Marcovecchio JE (2010) Effects of zinc on molting and body weight of the estuarine crab Neohelice granulata (Brachyura: Varunidae). Sci Total Environ 408:531–536

    CAS  Google Scholar 

  • Bengtsson S, Hallquist J, Werker A, Welander T (2008) Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production. Biochem Eng J 40:492–499

    CAS  Google Scholar 

  • Bennet JW, Wunch KG, Faison BD (2002) Use of fungi biodegradation. In: Hurst CC (ed) Environmental microbiology, 2nd edn. ASM Press, Washington

    Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    CAS  Google Scholar 

  • Beolchini F, Pagnanelli F, Toro L, Vegliò F (2003) Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometall 70:101–112

    CAS  Google Scholar 

  • Bernal MP, McGrath SP, Miller AJ, Baker AJM (1994) Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant Soil 164:251–259

    CAS  Google Scholar 

  • Bernal-Martinez A, Patureau D, Delgenès J-P, Carrère H (2009) Removal of polycyclic aromatic hydrocarbons (PAH) during anaerobic digestion with recirculation of ozonated digested sludge. J Hazard Mater 162:1145–1150

    CAS  Google Scholar 

  • Bernal–Martinez A, Carrère H, Patureau D, Delgenès J–P (2007) Ozone pre-treatment as improver of PAH removal during anaerobic digestion of urban sludge. Chemosphere 68:1013–1019

    Google Scholar 

  • Bernal-Martínez A, Carrère H, Patureau D, Delgenès J-P (2005) Combining anaerobic digestion and ozonation to remove PAH from urban sludge. Process Biochem 40:3244–3250

    Google Scholar 

  • Bhandari A, Xia K (2005) Hazardous organic chemicals in biosolids recycled as soil amendments. Handbook Environ Chem 5(Part F 1):217–239

    CAS  Google Scholar 

  • Bhattacharyya KG, Sharma A (2004) Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder. J Hazard Mater 113:97–109

    CAS  Google Scholar 

  • Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Persp 103:1106–1108

    CAS  Google Scholar 

  • Bluthgen A (2000) Organic migration agents into milk at farm level (illustrated with di-ethylhexyl phthalate). Bull Int Dairy Fed 356:39–42

    CAS  Google Scholar 

  • Bohn I, Björnsson L, Mattiasson B (2007) The energy balance in farm scale anaerobic digestion of crop residues at 11–37°C. Process Biochem 42:57–64

    CAS  Google Scholar 

  • Bondada B, Ma LQ (2003) Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.). In: Chandra S, Srivastava M (eds) Pteridology in the new millennium. Kluwer, The Netherlands, pp 397–420

    Google Scholar 

  • Bongochgetsakul N, Ishida T (2007) A new analytical approach to optimizing the design of large-scale composting systems. Bioresour Technol 99:1630–1641

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Google Scholar 

  • Boparai HK, Shea PJ, Comfort SD, Machacek TA (2008) Sequencing zerovalent iron treatment with carbon amendments to remediate agrichemical-contaminated soil. Water Air Soil Pollut 193:189–196

    CAS  Google Scholar 

  • Børresen MH, Rike AG (2007) Effects of nutrient content, moisture content and salinity on mineralization of hexadecane in an Arctic soil. Cold Reg Sci Technol 48:129–138

    Google Scholar 

  • Bougrier C, Delgenès JP, Carrère H (2008) Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem Eng J 139:236–244

    CAS  Google Scholar 

  • Brim H, Osborne JP, Kostandarithes HM, Fredrickson JK, Wackett LP, Daly MJ (2006) Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. Microbiology 152:2469–2477

    CAS  Google Scholar 

  • Bruhlmann F, Chen W (1999) Tuning biphenyl dioxygenase for extended substrate specificity. Biotechnol Bioeng 63:544–551

    CAS  Google Scholar 

  • Brul S, Mensonides FIC, Hellingwerf KJ, Teixeira de Mattos MJ (2008) Microbial systems biology: new frontiers open to predictive microbiology. Int J Food Microbiol 128:16–21

    Google Scholar 

  • Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    CAS  Google Scholar 

  • Cai JL, Wang GC, Li YC, Zhu DL, Pan GH (2009) Enrichment and hydrogen production by Maríne anaerobic hydrogen-producing microflora. Chin Sci Bull 54:2656–2661

    CAS  Google Scholar 

  • Chaney RL (1983) In: Parr J, Marsh EM (eds) Land treatment of hazardous wastes. Noyes Data Corp., Park Rdge, pp 50–76

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation-focusing on accumulator plants that remediate metal-contaminated soils. Australas J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Chaudhry Q, Schröder P, Werck-Reichhart D, Grajek W, Marecik R (2002) Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ Sci Pollut Res 9:4–17

    CAS  Google Scholar 

  • Chen S, Wilson DB (1997) Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradion 8:97–103

    CAS  Google Scholar 

  • Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565

    CAS  Google Scholar 

  • Chen Y, Liu Y, Zhou Q, Gu G (2005) Enhanced phosphorus biological removal from wastewater—effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture. Biochem Eng J 27:24–32

    CAS  Google Scholar 

  • Chen YD, Barker JF, Gui L (2008a) A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study. J Contam Hydrol 96:17–31

    CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008b) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    CAS  Google Scholar 

  • Cheng H–F, Kumar M, Lin J–G (2008) Degradation kinetics of di-(2-ethylhexyl) phthalate (DEHP) and organic matter of sewage sludge during composting. J Hazard Mater 154:55–62

    CAS  Google Scholar 

  • Chintakovid W, Visoottiviseth P, Khokiattiwong S, Lauengsuchonkul S (2008) Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere 70:1532–1537

    CAS  Google Scholar 

  • Cho DH, Kim EY (2003) Characterization of Pb2+ biosorption from aqueous solution by Rhodotorula glutinis. Bioprocess Biosyst Eng 25:271–277

    CAS  Google Scholar 

  • Chong SL, Mou DG, Ali AM, Lim SH, Tey BT (2008) Cell growth, cell-cycle progress, and antibody production in hybridoma cells cultivated under mild hypothermic conditions. Hybridoma 27:107–111

    CAS  Google Scholar 

  • Chu CP, Chang BV, Liao GS, Jean SD, Lee DJ (2001) Observations on changes in ultrasonically treated waste-activated sludge. Water Res 35:1038–1046

    CAS  Google Scholar 

  • Chu L, Yan S, Xing X-H, Sun X, Jurcik B (2009) Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production. Water Res 43:1811–1822

    CAS  Google Scholar 

  • Cimino G, Cappello RM, Caristi C, Toscano G (2005) Characterization of carbons from olive cake by sorption of wastewater pollutants. Chemosphere 61:947–955

    CAS  Google Scholar 

  • Cintas P, Luche JL (1999) Green chemistry: the sonochemical approach. Green Chem 1:115–125

    CAS  Google Scholar 

  • Clark JH (2006) Green chemistry: today (and tomorrow). Green Chem 8:17–21

    CAS  Google Scholar 

  • Clark B, Boopathy R (2007) Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. J Hazard Mater 143:643–648

    CAS  Google Scholar 

  • Clarkson DT, Luttge V (1989) Mineral intrusion: divalent cations transport and compartmentalization. Prog Bot 51:93–112

    Google Scholar 

  • Cofield N, Schwab AP, Banks MK (2007) Phytoremediation of polycyclic aromatic hydrocarbons in soil: part I. Dissipation of target contaminants. Int J Phytoremed 9:355–370

    CAS  Google Scholar 

  • Contreras-Ramos SM, Álvarez-Bernal D, Dendooven L (2006) Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environ Pollut 141:396–401

    CAS  Google Scholar 

  • Contreras-Ramos SM, Álvarez-Bernal D, Dendooven L (2009) Characteristics of earthworms (Eisenia fetida) in PAHs contaminated soil amended with sewage sludge or vermicompost. Appl Soil Ecol 41:269–276

    Google Scholar 

  • Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58:1439–1448

    CAS  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: An overview. In vitro Cell Dev Biol 29:207–212

    Google Scholar 

  • Da Silva EA, Cossich ES, Tavares CRG, Filho LC, Guirardello R (2002) Modeling of copper(II) biosorption by marine alga Sargassum sp. in fixed-bed column. Process Biochem 38:791–799

    CAS  Google Scholar 

  • Dafale N, Nageswara Rao N, Meshram SU, Wate SR (2008) Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium-Biostimulation and halo tolerance. Bioresour Technol 99:2552–2558

    CAS  Google Scholar 

  • Dang VBH, Doan HD, Dang-Vu T, Lohi A (2009) Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresour Technol 100:211–219

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    CAS  Google Scholar 

  • Das KC, Xia K (2008) Transformation of 4-nonylphenol isomers during biosolids composting. Chemosphere 70:761–768

    CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2007) A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 41:8281–8287

    CAS  Google Scholar 

  • Davies OA, Allison ME, Uyi HS (2006) Bioaccumulation of heavy metals in water, sediment and periwinkle (Tympanotonus fuscatus var radula) from the Elechi Creek, Niger Delta. Afr J Biotechnol 5:968–973

    CAS  Google Scholar 

  • Davila-Vazquez G, Arriaga S, Alatriste-Mondragón F, de León-Rodríguez A, Rosales-Colunga LM, Razo-Flores E (2008) Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol 7:27–45

    CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    CAS  Google Scholar 

  • de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168

    Google Scholar 

  • de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589

    Google Scholar 

  • Deleu M, Paquot M (2004) From renewable vegetables resources to microorganisms: new trends in surfactants. C R Chimie 7:641–646

    CAS  Google Scholar 

  • Delgado-Moreno L, Peña A (2009) Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil. Sci Total Environ 407:1489–1495

    CAS  Google Scholar 

  • Deng X, Li QB, Lu YH, He N, Jiang J (2005) Genetic engineering of E. coli SE5000 and its potential for Ni2+ bioremediation. Process Biochem 40:425–430

    CAS  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225

    CAS  Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101:1558–1569

    CAS  Google Scholar 

  • Dheri GS, Brar MS, Malhi SS (2007) Comparative phytoremediation of chromium-contaminated soils by fenugreek, spinach, and raya. Commun Soil Sci Plant Anal 38:1655–1672

    CAS  Google Scholar 

  • Diaz MJ, Madejon E, Lopez F, Lopez R, Cabrera F (2002) Optimization of the rate vinasse/grape marc for co-composting process. Process Biochem 37:1143–1150

    CAS  Google Scholar 

  • Domde P, Kapley A, Purohit HJ (2007) Impact of bioaugmentation with a consortium of bacteria on the remediation of wastewater-containing hydrocarbons. Environ Sci Pollut Res Int 14:7–11

    CAS  Google Scholar 

  • Dordio AV, Duarte C, Barreiros M, Palace Carvalho AJ, Pinto AP, Teixeira da Costa C (2009) Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.—potential use for phytoremediation? Bioresour Technol 100:1156–1161

    CAS  Google Scholar 

  • dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    CAS  Google Scholar 

  • Dosnon–Olette R, Couderchet M, Eullaffroy P (2009) Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate. Ecotoxicol Environ Saf 72:2096–2101

    Google Scholar 

  • Dou J, Liu X, Hu Z, Deng D (2008) Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. J Hazard Mater 151:720–729

    CAS  Google Scholar 

  • Doucleff M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20:1094–1095

    CAS  Google Scholar 

  • Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere 72:1481–1490

    CAS  Google Scholar 

  • Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:204–206

    CAS  Google Scholar 

  • Drzyzga O, El Mamouni R, Agathos SN, Gottschal JC (2002) Dehalogenation of chlorinated ethenes and immobilization of nickel in anaerobic sediment columns under sulfidogenic conditions. Environ Sci Technol 36:2630–2635

    CAS  Google Scholar 

  • Dumestre A, Chone T, Portal J, Gerard M, Berthelin J (1997) Cyanide degradation under alkaline conditions by a strain of fusarium solani isolated from contaminated soils. Appl Environ Microbiol 63:2729–2734

    CAS  Google Scholar 

  • Durán N (2008) Use of nanoparticles in soil-water bioremediation processes. J Soil Sci Plant Nutrit 8:33–38

    Google Scholar 

  • Durán N, Marcato PD, Alves OL et al (2010) Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process. J Nanoparticle Res 12:285–292

    Google Scholar 

  • Dushenkov V, Kumar PB, Motto AN, Raskin H (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Google Scholar 

  • Dytczak MA, Londry KL, Siegrist H, Oleszkiewicz JA (2007) Ozonation reduces sludge production and improves denitrification. Water Res 41:543–550

    CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    CAS  Google Scholar 

  • Ebbs S, Hatfield S, Nagarajan V, Blaylock M (2010) A Comparison of the dietary arsenic exposures from ingestion of contaminated soil and hyperaccumulating Pteris ferns used in a residential phytoremediation project. Int J Phytoremed 12:121–132

    CAS  Google Scholar 

  • Eckenfelder WW Jr (1989) Industrial water pollution control. McGraw-Hill, New York

    Google Scholar 

  • Ecobichon DJ (2000) Our changing perspectives on benefit and risks of pesticides: a historical overview. Neurotoxicol 21:211–218

    CAS  Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicol 160:27–33

    CAS  Google Scholar 

  • Eklind Y, Sundberg C, Smårs S, Steger K, Sundh I, Kirchmann H, Jönsson H (2007) Carbon turnover and ammonia emissions during composting of biowaste at different temperatures. J Environ Qual 36:1512–1520

    CAS  Google Scholar 

  • Ekmekyapar F, Aslan A, Kemal Bayhan Y, Cakici A (2006) Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm. J Hazard Mater 137:293–298

    CAS  Google Scholar 

  • El-Bestawy E, Albrechtsen H-J (2007) Effect of nutrient amendments and sterilization on mineralization and/or biodegradation of 14C-labeled MCPP by soil bacteria under aerobic conditions. Int Biodeterior Biodegrad 59:193–201

    CAS  Google Scholar 

  • Elisashvili V, Penninckx M, Kachlishvili E et al (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99:457–462

    CAS  Google Scholar 

  • Elliott DW, Lien H-L, Zhang W (2008) Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. J Environ Qual 37:2192–2201

    CAS  Google Scholar 

  • Elouear Z, Bouzid J, Boujelben N, Feki M, Montiel A (2008) The use of exhausted olive cake ash (EOCA) as a low cost adsorbent for the removal of toxic metal ions from aqueous solutions. Fuel 87:2582–2589

    CAS  Google Scholar 

  • Esmaeili A, Beirami P, Rustaiyan A, Rafiei F, Ghasemi S, Assadian F (2008) Evaluation of the marine alga Gracilaria Corticata for the biosorption of Cu (II) from wastewater in a packed column. J Mar Environ Eng 9:65–73

    CAS  Google Scholar 

  • Eullaffroy P, Vernet G (2003) The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Water Res 37:1983–1990

    CAS  Google Scholar 

  • Evans PJ, Trute MM (2006) In Situ bioremediation of nitrate and perchlorate in vadose zone soil for groundwater protection using gaseous electron donor injection technology. Water Environ Res 78:2436–2446

    CAS  Google Scholar 

  • Failey RA, Scrivens AJ (1994) Contaminated land, assessment and redevelopment. Stanley Thrones Publishers, Cheltenham

    Google Scholar 

  • Fan L, Pandey A, Mohan R et al (2000) Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol 20:41–52

    Google Scholar 

  • Fantozzi F, Buratti C (2009) Biogas production from different substrates in an experimental continuously stirred tank reactor anaerobic digester. Bioresour Technol 100:5783–5789

    CAS  Google Scholar 

  • Fatemi MH, Baher E (2009) A novel quantitative structure-activity relationship model for prediction of biomagnification factor of some organochlorine pollutants. Mol Divers 13:343–352

    CAS  Google Scholar 

  • Ferguson SH, Franzmann PD, Snape I, Revill AT, Trefry MG, Zappia LR (2003) Effects of temperature on mineralisation of petroleum in contaminated Antarctic terrestrial sediments. Chemosphere 52:975–987

    CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7:211–241

    CAS  Google Scholar 

  • Figueira MM, Volesky B, Ciminelli VST, Roddick FA (2000) Biosorption of metals in brown seaweed biomass. Water Res 34:196–204

    CAS  Google Scholar 

  • Fitzmorris KB, Sarmiento F, O’Callaghan P (2009) Biosolids and sludge management. Water Environ Res 81:1376–1393

    CAS  Google Scholar 

  • Fleming J, Sanseverino J, Sayler G (1993) Quantitative relationship between naphthalene catabolic gene frequency and expression in predicting PAH degradation in soils at town gas manufacturing sites. Environ Sci Technol 27:1068–1074

    CAS  Google Scholar 

  • Fogarty AM, Tuovinen OH (1991) Microbiological degradation of pesticides in yard waste composting. Microbiol Rev Am Soc Microbiol 55:225–233

    CAS  Google Scholar 

  • Forouzangohar M, Haghnia GH, Koocheki A (2005) Organic amendments to enhance atrazine and metamitron degradation in two contaminated soils with contrasting textures. Soil Sediment Contam 14:345–355

    CAS  Google Scholar 

  • Fountoulakis MS, Stamatelatou K, Lyberatos G (2008) The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour Technol 99:7083–7090

    CAS  Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    CAS  Google Scholar 

  • Fu J, Mai B, Sheng G, Zhang G, Wang X, Peng P, Xiao X, Ran R, Cheng F, Peng X, Wang Z, Tang UW (2003) Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere 52:1411–1422

    CAS  Google Scholar 

  • Fuchedzhieva N, Karakashev D, Angelidaki I (2008) Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. J Hazard Mater 153:123–127

    CAS  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38:311–400

    CAS  Google Scholar 

  • Gal H, Ronen Z, Weisbrod N, Dahan O, Nativ R (2008) Perchlorate biodegradation in contaminated soils and the deep unsaturated zone. Soil Biol Biochem 40:1751–1757

    CAS  Google Scholar 

  • Garcia-Blanco S, Venosa AD, Suidan MT, Lee K, Cobanli S, Haines JR (2007) Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation 18:1–15

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gonzalez JH, Cano-Aguilera I, Henning JA, Townsend MS (1996) Removal of nickel ions from aqueous solution by biomass and silica—immobilized biomass of Medicago sativa (alfalfa). J Hazard Mater 49:205–216

    CAS  Google Scholar 

  • Garg P, Gupta A, Satya S (2006) Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Bioresour Technol 97:391–395

    CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    CAS  Google Scholar 

  • Ge Y, Yan L, Qing K (2004) Effect of environment factors on dye decolorization by P. sordida ATCC90872 in a aerated reactor. Process Biochem 39:1401–1405

    CAS  Google Scholar 

  • Gelman F, Binstock R (2008) Natural attenuation of MTBE and BTEX compounds in a petroleum contaminated shallow coastal aquifer. Environ Chem Lett 6:259–262

    CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG et al (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    CAS  Google Scholar 

  • Gertler C, Gerdts G, Timmis KN, Golyshin PN (2009) Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation. FEMS Microbiol Ecol 69:288–300

    CAS  Google Scholar 

  • Ghaly AE, Alkoaik F, Snow A (2006) Thermal balance of invessel composting of tomato plant residues. Can Biosyst Eng 48:1–11

    Google Scholar 

  • Ghaly AE, Alkoaik F, Snow A (2007) Degradation of pirimiphos-methyl during thermophilic composting of greenhouse tomato plant residues. Can Biosyst Eng 49:1–11

    Google Scholar 

  • Gibson RW, Wang M-J, Padgett E, Lopez-Real JM, Beck AJ (2007) Impact of drying and composting procedures on the concentrations of 4-nonylphenols, di-(2-ethylhexyl)phthalate and polychlorinated biphenyls in anangaerobically digested sewage sludge. Chemosphere 68:1352–1358

    CAS  Google Scholar 

  • Gidarakos EL, Aivalioti MV (2008) In-well air sparging efficiency in remediating the aquifer of a petroleum refinery site. J Environ Eng Sci 7:71–82

    Google Scholar 

  • Gijzen HJ, Bernal E, Ferrer H (2000) Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment. Water Res 34:2447–2454

    CAS  Google Scholar 

  • Göblös Sz, Portörő P, Bordás D, Kálmán M, Kiss I (2008) Comparison of the effectivities of two-phase and single-phase anaerobic sequencing batch reactors during dairy wastewater treatment. Renew Energy 33:960–965

    Google Scholar 

  • Godoy-Faúndez A, Antizar-Ladislao B, Reyes-Bozo L, Camaño A, Sáez-Navarrete C (2008) Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile). J Hazard Mater 151:649–657

    Google Scholar 

  • Goel M, Chovelon J-M, Ferronato C, Bayard R, Sreekrishnan TR (2010) The remediation of wastewater containing 4-chlorophenol using integrated photocatalytic and biological treatment. J Photochem Photobiol B Biol 98:1–6

    CAS  Google Scholar 

  • Govind R, Lai L, Dobbs R (1991) Integrated model for predicting the fate of organics in wastewater treatment plants. Environ Prog 10:13–23

    CAS  Google Scholar 

  • Gurbuz F, Ciftci H, Akcil A (2009) Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J Hazard Mater 162:74–79

    CAS  Google Scholar 

  • Hamdi H, Benzarti S, Manusadžianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935

    CAS  Google Scholar 

  • Hamer G (1993) Bioremediation: a response to gross environmental abuse. Trends Biotechnol 11:317–319

    Google Scholar 

  • Hao X-D, Zhang L-P, Li L (2007) Global overview of excess sludge treatment and disposal methods. China Water Wastewater 23:1–5

    Google Scholar 

  • Harman G, Patrick R, Spittler T (2007) Removal of heavy metals from polluted waters using lignocellulosic agricultural waste products. Ind Biotechnol 3:366–374

    CAS  Google Scholar 

  • Harmsen J, Rulkens WH, Sims RC, Rijtema PE, Zweers AJ (2007) Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments; beneficial reuse. J Environ Qual 36:1112–1122

    CAS  Google Scholar 

  • Hartlieb N, Ertunç T, Schaeffer A, Klein W (2003) Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste. Environ Pollut 126:83–91

    CAS  Google Scholar 

  • Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007) Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol 25:119–124

    CAS  Google Scholar 

  • Hatzinger PB, Whittier MC, Arkins MD, Bryan CW, Guarini WJ (2002) In-situ and ex-situ bioremediation options for treating perchlorate in groundwater. Remed J 12:69–86

    Google Scholar 

  • Heron G, Gierke JS, Faulkner B, Mravik S, Wood L, Enfield CG (2002) Pulsed air sparging in aquifers contaminated with dense nonaqueous phase liquids. Ground Water Monit Remed 22:73–82

    CAS  Google Scholar 

  • Hickman ZA, Reid BJ (2008) Earthworm assisted bioremediation of organic contaminants. Environ Int 34:1072–1081

    CAS  Google Scholar 

  • Hirschorn SK, Grostern A, Lacrampe-Couloume G, Edwards EA, MacKinnon L, Repta C, Major DW, Sherwood Lollar B (2007) Quantification of biotransformation of chlorinated hydrocarbons in a biostimulation study: added value via stable carbon isotope analysis. J Contam Hydrol 94:249–260

    CAS  Google Scholar 

  • Hjeitzer A, Sayler G (1993) Monitoring the efficacy of bioremediation. Trends Biotechnol 11:334–343

    Google Scholar 

  • Höfer R, Bigorra J (2007) Green chemistry—a sustainable solution for industrial specialties applications. Green Chem 9:203–212

    Google Scholar 

  • Holden PA, Halverson LJ, Firestone MK (1997) Water stress effects on toluene biodegradation by Pseudomonas putida. Biodegradation 8:143–151

    CAS  Google Scholar 

  • Hoyer PB (2001) Reproductive toxicology: current and future directions. Biochem Pharmacol 62:1557–1564

    CAS  Google Scholar 

  • Huang JW, Poynton CY, Kochian LV, Elless MP (2004) Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environ Sci Technol 38:3412–3417

    CAS  Google Scholar 

  • Hultgren J, Pizzul L, del Pilar Castillo M, Granhall U (2010) Degradation of PAH in a creosote-contaminated soil: a comparison between the effects of willows (Salix Viminalis), wheat straw and a nonionic surfactant. Int J Phytoremed 12:54–66

    CAS  Google Scholar 

  • Husain Q, Husain M, Kulshrestha Y (2009) Remediation and treatment of organopollutants mediated by peroxidases: a review. Crit Rev Biotechnol 29:94–119

    Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907

    CAS  Google Scholar 

  • In B-H, Park J-S, Namkoong W, Hwang E-Y, Kim J-D (2008) Effect of co-substrate on anaerobic slurry phase bioremediation of TNT-contaminated soil. Korean J Chem Eng 25:102–107

    CAS  Google Scholar 

  • Iranzo M, Sainz-Pardo I, Boluda R, Sánchez J, Mormeneo S (2001) The use of microorganisms in environmental remediation. Ann Microbiol 51:135–143

    Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    CAS  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    CAS  Google Scholar 

  • Jain DK, Lee H, Trevors JT (1992) Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J Ind Microbiol Biotechnol 10:87–93

    Google Scholar 

  • Jain M, Garg VK, Kadirvelu K (2009) Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J Hazard Mater 162:365–372

    CAS  Google Scholar 

  • January MC, Cutright TJ, Van Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    CAS  Google Scholar 

  • Jayakumar K, Jaleel CA (2009) Uptake and accumulation of cobalt in plants: a study based on exogenous cobalt in soybean. Botany Res Int 2:310–314

    CAS  Google Scholar 

  • Jerez CA (2009) Biomining microorganisms: molecular aspects and applications in biotechnology and bioremediation. In: Advances in applied bioremediation. Springer, Berlin, pp 239–256

  • Jha KP, Nair S, Gopinathan MC, Babu CR (1995) Suitability of rhizobia-inoculated wild legumes Argyolobium flaccidum, Astagalus graveolens, Indigo gangetica, and Lespedeza stenocarpa in providing a vegetational cover in an unreclaimed limestone quarry. Plant Soil 177:139–149

    CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    CAS  Google Scholar 

  • Johnson RL, Johnson PC, McWhorter DB, Hinchee RE, Goodman I (2007) An overview of in situ air sparging. Ground Water Monit Remed 13:127–135

    Google Scholar 

  • Joo H-S, Ndegwa PM, Shoda M, Phae C-G (2008) Bioremediation of oil-contaminated soil using Candida catenulata and food waste. Environ Pollut 156:891–896

    CAS  Google Scholar 

  • Jørgensen KS, Puustinen J, Suortti A–M (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ Pollut 107:245–254

    Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    CAS  Google Scholar 

  • Juwarkar AS, Juwarkar A, Pande VS, Bal AS (1992) Restoration of manganese mine spoil dump productivity using pressmud. In: Singhal RK, Mehrotra AK, Kostas, Jeanlue Collines AA (eds) Environmental issues and management of waste in energy and mineral production. Balekema Roterdam, Brookfield

    Google Scholar 

  • Juwarkar AA, Juwarkar AS, Mowade S, Jambhulkar H, Shrivastava A, Kulkarni A, Amte P, Khanna P (1997) Role of biofertilizers in reclamation of manganese mine spoil dumps. Biofertil Newslett (July & December) 18–24

  • Juwarkar AA, Dubey K, Khobragade R, Nimje M (2000) Phytoremediation of mine spoil dump using integrated biotechnological approach. In Proceedings of international symposium on geo environmental reclamation, November 19–22. A. D., Nagpur, pp 425–429

  • Kamal M, Ghaly AE, Mahmoud N, Côté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    CAS  Google Scholar 

  • Kanel S, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanoparticle Res 9:725–735

    CAS  Google Scholar 

  • Karpouzas DG, Singh BK (2010) Application of fingerprinting molecular methods in bioremediation studies. Bioremediation 599:69–88

    CAS  Google Scholar 

  • Katsoyiannis A, Terzi E, Cai Q–Y (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69:1337–1339

    CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6 and CYP2C19. J Agric Food Chem 54:2985–2991

    CAS  Google Scholar 

  • Keasling JD, Bang S-W (1998) Recombinant DNA techniques for bioremediation and environmentally-friendly synthesis. Curr Opin Biotechnol 9:135–140

    CAS  Google Scholar 

  • Keener HM, Marugg C, Hansen RC, Hoitink H (1993) Optimizing the efficiency of the compost process. Science and Engineering of Composting. The Ohio State University, Columbus, pp 59–94

    Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food web-specific biomagnification of persistent organic pollutants. Science 317:236–239

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elements Med Biol 18:355–364

    CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Google Scholar 

  • Khanal SK (2008) Overview of anaerobic biotechnology. Chapter 1, anaerobic biotechnology for bioenergy production: principles and applications. Wiley and Blackwell, pp 1–27

  • Kidak R, Wilhelm A-M, Delmas H (2009) Effect of process parameters on the energy requirement in ultrasonical treatment of waste sludge. Chem Eng Process Process Intensif 48:1346–1352

    CAS  Google Scholar 

  • Kidwai M, Mohan R (2005) Green chemistry: an innovative technology. Found Chem 7:269–287

    CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Google Scholar 

  • Kim H-M, Hyun Y, Lee K-K (2007) Remediation of TCE-contaminated groundwater in a sandy aquifer using pulsed air sparging: laboratory and numerical studies. J Environ Eng 133:380–388

    CAS  Google Scholar 

  • Kim H, Annable MD, Rao PS, Cho J (2009) Laboratory evaluation of surfactant-enhanced air sparging for perchloroethene source mass depletion from sand. J Environ Sci Health A, Toxicol Hazard Subst Environ Eng 44:406–413

    CAS  Google Scholar 

  • King P, Anuradha K, Lahari SB, Kumar YP, Prasad VSRK (2008) Biosorption of zinc from aqueous solution using Azadirachta indica bark: Equilibrium and kinetic studies. J Hazard Mater 152:324–329

    CAS  Google Scholar 

  • Kirchhoff MM (2003) Promoting green engineering through green chemistry. Environ Sci Technol 37:5349–5353

    CAS  Google Scholar 

  • Kiyono M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci 52:199–204

    CAS  Google Scholar 

  • Kocasoy G, Güvener Z (2009) Efficiency of compost in the removal of heavy metals from the industrial wastewater. Environ Geol 57:291–296

    CAS  Google Scholar 

  • Koenigsberg SS, Hazen TC, Peacock AD (2005) Environmental biotechnology: a bioremediation perspective. Remed J 15:5–25

    Google Scholar 

  • Komnitsas K, Bartzas G, Paspaliaris I (2004) Efficiency of limestone and red mud barriers: laboratory column studies. Miner Eng 17:183–194

    CAS  Google Scholar 

  • Korade DL, Fulekar MH (2008) Remediation of anthracene in mycorrhizospheric soil using ryegrass. Afr J Environ Sci Technol 2:249–256

    Google Scholar 

  • Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115:1641–1650

    CAS  Google Scholar 

  • Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25:1–30

    CAS  Google Scholar 

  • Krishnani KK, Shekhar MS, Gopikrishna G, Gupta BP (2009) Molecular biological characterization and biostimulation of ammonia—oxidizing bacteria in brackishwater aquaculture. J Environ Sci HealthPart A 44:1598–1608

    CAS  Google Scholar 

  • Kularatne RKA, Kasturiarachchi JC, Manatunge JMA, Wijeyekoon SL (2009) Mechanisms of manganese removal from wastewaters in constructed wetlands comprising water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions. Water Environ Res 81:165–172

    CAS  Google Scholar 

  • Kulcu R, Yildiz O (2004) Determination of aeration rate and kinetics of composting some agricultural wastes. Bioresour Technol 93:49–57

    CAS  Google Scholar 

  • Kulkarni PS, Crespo JG, Afonso CAM (2008) Dioxins sources and current remediation technologies—a review. Environ Int 34:139–153

    CAS  Google Scholar 

  • Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97:104–109

    CAS  Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Patents Biotechnol 2:10–24

    CAS  Google Scholar 

  • Kuntz J, Nassr–Amellal N, Lollier M, Schmidt JE, Lebeau T (2008) Effect of sludges on bacteria in agricultural soil. Analysis at laboratory and outdoor lysimeter scale. Ecotoxicol Environ Saf 69:277–288

    CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao F-J, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Google Scholar 

  • Kwon KH, Yeom SH (2009) Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioprocess Biosyst Eng 32:435–442

    CAS  Google Scholar 

  • Lai KCK, Surampalli RY, Tyagi RD, Lo IMC, Yan S (2007) Performance monitoring of remediation technologies for soil and groundwater contamination: review. Pract Period Hazard Toxicol Radioactive Waste Manag 11:132–157

    CAS  Google Scholar 

  • Lai Y-L, Annadurai G, Huang F-C, Lee J-F (2008) Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresour Technol 99:6480–6487

    CAS  Google Scholar 

  • Lai C-C, Huang Y-C, Wei Y-H, Chang J-S (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    CAS  Google Scholar 

  • Laine MM, Ahtiainen J, Wågman N, Öberg LG, Jørgensen KS (1997) Fate and toxicity of chlorophenols, polychlorinated dibenzo-p-dioxins, and dibenzofurans during composting of contaminated sawmill soil. Environ Sci Technol 31:3244–3250

    CAS  Google Scholar 

  • Lankey RL, Anastas PT (2002) Life-cycle approaches for assessing green chemistry technologies. Ind Eng Chem Res 41:4498–4502

    CAS  Google Scholar 

  • Lee G-T, Ro H-M, Lee S-M (2007) Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils. Environ Technol 28:853–860

    CAS  Google Scholar 

  • Lemire J, Mailloux R, Puiseux-Dao S, Appanna VD (2009) Aluminum-induced defective mitochondrial metabolism perturbs cytoskeletal dynamics in human astrocytoma cells. J Neurosci Res 87:1474–1483

    CAS  Google Scholar 

  • Li X, Feng Y, Sawatsky N (1997) Importance of soil-water relations in assessing the endpoint of bioremediated soils. Plant Soil 192:219–226

    CAS  Google Scholar 

  • Li W, Zhang G, Zhang P, Liu H (2008) Waste activated sludge reduction using sonication and cryptic growth. Int J Biotechnol 10:64–72

    Google Scholar 

  • Li X, Ma H, Wang Q, Matsumoto S, Maeda T, Ogawa HI (2009) Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge. Bioresour Technol 100:2475–2481

    CAS  Google Scholar 

  • Lima D, Viana P, André S, Chelinho S, Costa C, Ribeiro R, Sousa JP, Fialho AM, Viegas CA (2009) Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches. Chemosphere 74:187–192

    CAS  Google Scholar 

  • Lin Z-Q (2008) Ecological process: volatilization. In: Jorgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Oxford, pp 3700–3705

    Google Scholar 

  • Litchfiled C (2005) Thirty years and counting: bioremediation in its prime? Bioscience 55:273–279

    Google Scholar 

  • Liu CW, Chang WN, Liu HS (2009) Bioremediation of n-alkanes and the formation of biofloccules by Rhodococcus erythropolis NTU-1 under various saline conditions and sea water. Biochem Eng J 45:69–75

    CAS  Google Scholar 

  • Lodha B, Bhadane R, Patel B, Killedar D (2008) Biodegradation of pyridine by an isolated bacterial consortium/strain and bio–augmentation of strain into activated sludge to enhance pyridine biodegradation. Biodegradation 19:717–723

    CAS  Google Scholar 

  • Lombi E, Zhao F-J, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    CAS  Google Scholar 

  • López Torres M, Espinosa Lloréns MC (2008) Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag 28:2229–2234

    Google Scholar 

  • López-Nieto MJ, Costa J, Peiro E et al (2004) Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl Microbiol Biotechnol 66:153–159

    Google Scholar 

  • Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004) Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids Surf A Physicochem Eng Aspects 242:93–104

    CAS  Google Scholar 

  • Lu S, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Bioresour Technol 99:1509–1517

    CAS  Google Scholar 

  • Lu J, Gavala HN, Skiadas IV, Mladenovska Z, Ahring BK (2008) Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step. J Environ Manag 88:881–889

    CAS  Google Scholar 

  • Ludmer Z, Golan T, Ermolenko E, Brauner N, Ullmann A (2009) Simultaneous removal of heavy metals and organic pollutants from contaminated sediments and sludges by a novel technology, sediments remediation phase transition extraction. Environ Eng Sci 26:419–430

    CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation-prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature (London) 409:579

    CAS  Google Scholar 

  • Macé C, Desrocher S, Gheorghiu F, Kane A, Pupeza M et al (2006) Nanotechnology and groundwater remediation: a step forward in technology understanding. Remed J 16:23–33

    Google Scholar 

  • Machado RM, Correia MJN, Carvalho JMR (2003) Integrated process for biosorption of copper from liquid effluents using grape stalks. Sep Sci Technol 38:2237–2254

    CAS  Google Scholar 

  • Maciel BM, Santos ACF, Dias JCT, Vidal RO, Dias RJC, Gross E, Cascardo JCM, Rezende RP (2009) Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste. Genet Mol Res 8:375–388

    CAS  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007) High uptake of 2, 4, 6-trinitrotoluene by vetiver grass—potential for phytoremediation? Environ Pollut 146:1–4

    CAS  Google Scholar 

  • Malaisse F, Gregoire J, Brooks RR, Morrison RS, Reeves RD (1997) Aeolanthus biformifolius De Wild.: a hyperaccumulator of copper from Zaire. Science 199:887–888

    Google Scholar 

  • Malkoc E (2006) Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. J Hazard Mater 137:899–908

    CAS  Google Scholar 

  • Mao T, Show K-Y (2007) Influence of ultrasonication on anaerobic bioconversion of sludge. Water Environ Res 79:436–441

    CAS  Google Scholar 

  • Mao T, Hong S-Y, Show K-Y, Tay J-H, Lee D-J (2004) A comparison of ultrasound treatment on primary and secondary sludges. Water Sci Technol 50:91–97

    CAS  Google Scholar 

  • Maranon E, Sastre H (1991) Heavy metal removal in packed beds using apple wastes. Bioresour Technol 38:39–43

    CAS  Google Scholar 

  • Margesin R, Hämmerle M, Tscherko D (2007) Microbial activity and community composition during bioremediation of diesel-Oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation. Microb Ecol 53:259–269

    CAS  Google Scholar 

  • Marín JA, Hernandez T, Garcia C (2005) Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity. Environ Res 98:185–195

    Google Scholar 

  • Marín JA, Moreno JL, Hernández T, García C (2006) Bioremediation by composting of heavy oil refinery sludge in semiarid conditions. Biodegradation 17:251–261

    Google Scholar 

  • Marsolek MD, Kirisits MJ, Rittmann BE (2007) Biodegradation of 2, 4, 5-trichlorophenol by aerobic microbial communities: biorecalcitrance, inhibition, and adaptation. Biodegradation 18:351–358

    CAS  Google Scholar 

  • Marttinen SK, Kettunen RH, Sormunen KM, Rintala JA (2003) Removal of bis(2-ethylhexyl) phthalate at a sewage treatment plant. Water Res 37:1385–1393

    CAS  Google Scholar 

  • Marttinen SK, Hänninen K, Rintala JA (2004) Removal of DEHP in composting and aeration of sewage sludge. Chemosphere 54:265–272

    CAS  Google Scholar 

  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: Development of a predictive model. Environ Pollut 150:363–372

    CAS  Google Scholar 

  • McMahon V, Garg A, Aldred D, Hobbs G, Smith R, Tothill IE (2008) Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere 71:1617–1628

    CAS  Google Scholar 

  • Meharg AA (2003) Variation in arsenic accumulation–hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    CAS  Google Scholar 

  • Melin ES, Jarvinen KT, Puhakka JA (1998) Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Water Res 32:81–90

    CAS  Google Scholar 

  • Melo JS, D’Souza SF (2004) Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 92:151–155

    CAS  Google Scholar 

  • Michel FC Jr, Reddy CA, Forney LJ (1995) Microbial degradation and humification of the lawn care pesticide 2, 4-dichlorophenoxyacetic acid during the composting of yard trimmings. Appl Environ Microbiol 61:2566–2571

    CAS  Google Scholar 

  • Michel FC Jr, Quensen J, Reddy CA (2001) Bioremediation of a PCB—contaminated soil via composting. Compost Sci Util 9:274–283

    Google Scholar 

  • Mihial DJ, Viraraghavan T, Jin Y-C (2006) Bioremediation of petroleum–contaminated soil using composting. Pract Period Hazard Toxicol Radioactive Waste Manag 10:108–115

    CAS  Google Scholar 

  • Min Y, Boqing T, Meizhen T, Aoyama I (2007) Accumulation and uptake of manganese in a hyperaccumulator Phytolacca Americana. Miner Eng 20:188–190

    CAS  Google Scholar 

  • Mirza N, Mahmood Q, Pervez A, Ahmad R, Farooq R, Shah MM, Azim MR (2010) Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Biores Technol 101:5815–5819

    CAS  Google Scholar 

  • Mohamed AMI, El-Menshawy N, Saif AM (2007) Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement. J Environ Manag 83:339–350

    CAS  Google Scholar 

  • Mohee R, Mudhoo A, Unmar GD (2008) Windrow co-composting of shredded office paper and broiler litter. Special issue on solid waste management—Part 1. Int J Environ Waste Manag 2:3–23

    CAS  Google Scholar 

  • Møller J, Winther P, Lund L, Kirkebjerg K, Westermann P (1996) Bioventing of diesel oil-contaminated soil: comparison of degradation rates in soil based on actual oil concentration and on respirometric data. J Ind Microbiol Biotechnol 16:110–116

    Google Scholar 

  • Mudhoo A, Mohee R (2008) Modeling heat loss during self–heating composting based on combined fluid film theory and boundary layer concepts. J Environ Inf 11:74–89

    Google Scholar 

  • Mulchandani A, Luong JHT, Groom C (1989) Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Appl Microbiol Biotechnol 30:11–17

    CAS  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    CAS  Google Scholar 

  • Murakami M, Ae N (2009) Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). J Hazard Mater 162:1185–1192

    CAS  Google Scholar 

  • N’Guessan AL, Elifantz H, Nevin KP, Mouser PJ, Methé B, Woodard TL, Manley K, Williams KH, Wilkins MJ, Larsen JT, Long PE, Lovley DR (2010) Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer. ISME J 4:253–266

    Google Scholar 

  • Naddeo V, Belgiorno V, Landi M, Zarra M, Napoli RMA (2009) Effect of sonolysis on waste activated sludge solubilisation and anaerobic biodegradability. Desalination 249:762–767

    CAS  Google Scholar 

  • Nagata T, Nakamura A, Akizawa T, Pan-Hou H (2009) Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury. Biol Pharm Bull 32:1491–1495

    CAS  Google Scholar 

  • Naja G, Volesky B (2006) Behavior of the mass transfer zone in a biosorption column. Environ Sci Technol 40:3996–4003

    CAS  Google Scholar 

  • Namkoong W, Hwang E-Y, Park J-S, Choi J-Y (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31

    CAS  Google Scholar 

  • Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18:273–278

    CAS  Google Scholar 

  • Negro MJ, Solano PC, Carasco J (1999) Composting of sweet sorghum bagasse with other wastes. Bioresour Technol 67:89–92

    CAS  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater 98:51–67

    CAS  Google Scholar 

  • Nigam P, Robinson T, Singh D (2004) Solid-state fermentation: an overview. In: Arora D (ed) Handbook of fungal biotechnology, mycology, vol 20. CRC Press, London

    Google Scholar 

  • Nikolopoulos AN, Igglessi-Markopoulou O, Papayannakos N (2006) Ultrasound assisted catalytic wet peroxide oxidation of phenol: kinetics and intraparticle diffusion effects. Ultrason Sonochem 13:92–97

    CAS  Google Scholar 

  • Noeline BF, Manohar DM, Anirudhan TS (2005) Kinetic and equilibrium modelling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Sep Purif Technol 45:131–140

    CAS  Google Scholar 

  • Nurzhanova A, Kulakow P, Rubin E et al (2010) Obsolete pesticides pollution and phytoremediation of contaminated soil in Kazakhstan. In: Application of phytotechnologies for cleanup of industrial, agricultural, and wastewater contamination. Springer, The Netherlands, pp 87–111

  • Okpokwasili GC, Nweke CO (2006) Microbial growth and substrate utilization kinetics. Afr J Biotechnol 5:305–317

    CAS  Google Scholar 

  • Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70:1414–1421

    CAS  Google Scholar 

  • Osman KA, Al-Rehiayani SM, Al-Deghairi MA, Salama AK (2009) Bioremediation of oxamyl in sandy soil using animal manures. Int Biodeterior Biodegradation 63:341–346

    CAS  Google Scholar 

  • Ozkoc HB, Bakan G, Ariman S (2007) Distribution and bioaccumulation of organochlorine pesticides along the Black Sea coast. Environ Geochem Health 29:59–68

    CAS  Google Scholar 

  • Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84:221–228

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P et al (2000a) Biotechnological potential of agro-industrial residues: II—Cassava bagasse. Bioresour Technol 74:81–87

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000b) New developments in solid state fermentation: I—bioprocesses and products. Process Biochem 35:1153–1169

    CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    CAS  Google Scholar 

  • Pérez SR, García ON, Bermúdez RC et al (2008) Decolourisation of mushroom farm wastewater by Pleurotus ostreatus. Biodegradation 19:519–526

    Google Scholar 

  • Pérez-Marín AB, Meseguer ZV, Ortuño JF, Aguilar M, Sáez J, Lloréns M (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater 139:122–131

    Google Scholar 

  • Periasamy K, Namasivayam C (1995) Removal of nickel(II) from aqueous solution and plating industry wastewater using an agriculture waste peanut hulls. Waste Manag 15:63–68

    CAS  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    CAS  Google Scholar 

  • Pignatello JJ (2009) Bioavailability of contaminants in soil. In: Advances in applied bioremediation, vol 17. Springer, Berlin, pp 35–71

  • Plangklang P, Reungsang A (2010) Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Process Biochem 45:230–238

    CAS  Google Scholar 

  • Plaza C, Xing B, Fernández JM, Senesi N, Polo A (2009) Binding of polycyclic aromatic hydrocarbons by humic. Biodegradation 21:345–356

    Google Scholar 

  • Polomski RF, Bielenberg DG, Whitwell T, Taylor MD, Bridges WC, Klaine SJ (2008) Differential nitrogen and phosphorus recovery by five aquatic garden species in laboratory-scale subsurface-constructed wetlands. Hort Sci 43:868–874

    Google Scholar 

  • Powell JJ, Jugdaohsingh R, Thompson RPH (1999) The regulation of mineral absorption in the gastrointestinal tract. Proc Nutr Soc 58:147–153

    CAS  Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    CAS  Google Scholar 

  • Prasanna D, Venkata Mohan S, Purushotham Reddy B, Sarma PN (2008) Bioremediation of anthracene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode. J Hazard Mater 153:244–251

    CAS  Google Scholar 

  • Preetha B, Viruthagiri T (2007) Batch and continuous biosorption of chromium(VI) by Rhizopus arrhizus. Sep Purif Technol 57:126–133

    CAS  Google Scholar 

  • Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev 2:886–897

    CAS  Google Scholar 

  • Prince RC (2010) Can we improve bioremediation? Handbook of hydrocarbon and lipid microbiology, Part 30. Springer, Berlin, pp 3351–3355

  • Qiu R-L, Liu F-J, Wan Y-B et al (2008) Phytoremediation on nickel–contaminated soils by hyperaccumulators Alyssum corsicum and Alyssum murale. China Environ Sci 28:1026–1031

    CAS  Google Scholar 

  • Rahman M, Hasan MR, Oba T, Shimizu K (2006) Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol Bioeng 94:585–595

    CAS  Google Scholar 

  • Raj A, Krishna Reddy MM, Chandra R, Purohit MJ, Kapley A (2007) Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 18:783–792

    CAS  Google Scholar 

  • Rajendran P, Gunasekaran P (2007) Nanotechnology for bioremediation of heavy metals. Environmental bioremediation technologies. Springer, Berlin, pp 211–221

    Google Scholar 

  • Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN (2000) State-of-the0art of anaerobic digestion technology for industrial wastewater treatment. Renew Sustain Energy Rev 4:135–156

    CAS  Google Scholar 

  • Rama Krishna M, Shailaja S, Sirisha K, Venkata Mohan S, Sarma PN (2006) Bio-remediation of pendimethalin contaminated soil by bio-slurry phase reactor: bio-augmenting with ETP micro-flora. Int J Environ Poll 27:373–387

    Google Scholar 

  • Ramos JL, Krell T, Daniels G, Segura A, Duque E (2009) Responses of Pseudomonas to small toxic molecules by a mosaic of domains. Curr Opin Microbiol 12:215–220

    CAS  Google Scholar 

  • Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10:361–372

    CAS  Google Scholar 

  • Rao TK, Murthy YLN (2007) Role of nano-science and technology for environmental protection. Nat Environ Pollut Technol 6:665–672

    CAS  Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci U S A 93:3164–3166

    CAS  Google Scholar 

  • Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LHJ (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128:734–741

    CAS  Google Scholar 

  • Ren N, Li N, Li B, Wang Y, Liu S (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 31:2147–2157

    CAS  Google Scholar 

  • Revankar MS, Desai KM, Lele SS (2007) Solid-state fermentation for enhanced production of Laccase using indigenously isolated Ganoderma sp. Appl Biochem Biotechnol 143:16–26

    CAS  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    CAS  Google Scholar 

  • Riaz M, Nadeem R, Hanif MA, Ansari TM, Khalil-ur-Rehman (2009) Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass. J Hazard Mater 161:88–94

    CAS  Google Scholar 

  • Richard TL, Walker PL, Gossett JM (2006) Effects of oxygen on aerobic solid-state biodegradation kinetics. Biotechnol Prog 22:60–69

    CAS  Google Scholar 

  • Rigas F, Papadopoulou K, Dritsa V et al (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 140:325–332

    CAS  Google Scholar 

  • Ritalahti KM, Löffler FE, Rasch EE, Koenigsberg SS (2005) Bioaugmentation for chlorinated ethene detoxification: bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Ind Biotechnol 1:114–118

    CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geocheml Exploration 60:115–126

    CAS  Google Scholar 

  • Robinson C, Barry DA, McCarty PL, Gerhard JI, Kouznetsova I (2009) pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Sci Total Environ 407:4560–4573

    CAS  Google Scholar 

  • Rodríguez-Rodríguez CE, Marco-Urrea E, Caminal G (2010) Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour Technol 101:2259–2266

    Google Scholar 

  • Romantschuk M, Sarand I, Petänen T, Peltola R, Jonsson-Vihanne M, Koivula T, Yrjälä K, Haahtela K (2000) Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Pollut 107:179–185

    CAS  Google Scholar 

  • Rubinos DA, Villasuso R, Muniategui S, Barral MT, Díaz-Fierros F (2007) Using the landfarming technique to remediate soils contaminated with hexachlorocyclohexane isomers. Water Air Soil Pollut 181:385–399

    CAS  Google Scholar 

  • Sabean JAR, Scott DB, Lee K, Venosa AD (2009) Monitoring oil spill bioremediation using marsh foraminifera as indicators. Mar Pollut Bull 59:352–361

    CAS  Google Scholar 

  • Saeed A, Iqbal M (2003) Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res 37:3472–3480

    CAS  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminate. Phytochemistry 47:339–347

    CAS  Google Scholar 

  • Salanitro JP, Dorn PB, Huesemann MH, Moore KO, Rhodes IA, Jackson LMR, Vipond TE, Western MM, Wisniewski HL (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Technol 31:1769–1776

    CAS  Google Scholar 

  • Salido AL, Hasty KL, Lim J–M, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremed 5:89–103

    CAS  Google Scholar 

  • Salinas-Martínez A, de los Santos-Córdova M, Soto-Cruz O, Delgado E, Pérez-Andrade H, Háuad-Marroquín LA, Medrano-Roldán H (2008) Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J Environ Manag 88:115–119

    Google Scholar 

  • Salt DE, Blaylock M, Kumar N, Dushenkov V, Ensley B, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    CAS  Google Scholar 

  • Sánchez A, Ysunza F, Beltrán-García MJ (2002) Biodegradation of viticulture wastes by pleurotus: a source of microbial and human food and its potential use in animal feeding. J Agric Food Chem 50:2537–2542

    Google Scholar 

  • Sani RK, Peyton BM, Brown LT (2001) Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Appl Environ Microbiol 67:4765–4772

    CAS  Google Scholar 

  • Sanscartier D, Laing T, Reimer K, Zeeb B (2009) Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere 77:1121–1126

    CAS  Google Scholar 

  • Sanscartier D, Reimer K, Zeeb B, George K (2010) Management of hydrocarbon—contaminated soil through bioremediation and landfill disposal at a remote location in Northern Canada. Can J Civil Eng 37:147–155

    CAS  Google Scholar 

  • Sanseverino J, Applegate BM, Henry King JM, Sayler GS (1993) Plasmid-mediated mineralization of napthalene, phenanthrene and anthracene. App and Environ Microbiol 59(6):1931–1937

    CAS  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008) Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresour Technol 99:205–209

    CAS  Google Scholar 

  • Sarı A, Tuzen M (2008) Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 157:448–454

    Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    CAS  Google Scholar 

  • Savant DV, Abdul–Rahman R, Ranade DR (2006) Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour Technol 97:1092–1104

    CAS  Google Scholar 

  • Sayler GS, Layton AC (1990) Environmental application of nucleic acid hybridization. Annu Rev Microbiol 44:625–648

    CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    CAS  Google Scholar 

  • Schnoor JL, Licht LA, Mc Cutcheon SC, Wolf NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:317–323

    Google Scholar 

  • Seki H (2000) Stochastic modeling of composting process with batch operation by the Fokker–Planck equation. Trans ASAE 43:169–179

    Google Scholar 

  • Sen R, Chakrabarti S (2009) Biotechnology-applications to environmental remediation in resource exploitation. Curr Sci 97:768–775

    CAS  Google Scholar 

  • Senthilkumar M, Arutchelvan V, Kanakasabai V, Venkatesh KR, Nagarajan S (2009) Biomineralisation of dye waste in a two-phase hybrid UASB reactor using starch effluent as a co-substrate. Int J Environ Waste Manag 3:354–365

    CAS  Google Scholar 

  • Sgarbi G, Casalena GA, Baracca A, Lenaz G, DiMauro S, Solaini G (2009) Human NARP mitochondrial mutation metabolism corrected with α-ketoglutarate/aspartate a potential new therapy. Arch Neurol 66:951–957

    Google Scholar 

  • Shah MM, Aust SD (1993) Degradation of cyanides by the white rot fungus phanerochaete chrysosporium. In: Emerging technologies for hazardous waste management III, Chapter 10, pp 191–202

  • Sharma CM, Rosseland BO, Almvik M, Eklo OM (2009) Bioaccumulation of organochlorine pollutants in the fish community in Lake Årungen, Norway. Environ Pollut 157:2452–2458

    CAS  Google Scholar 

  • Shen ZG, Zhao FJ, Mcgrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    CAS  Google Scholar 

  • Shewfelt K, Lee H, Zytner RG (2005) Optimization of nitrogen for bioventing of gasoline contaminated soil. J Environ Eng Sci 4:29–42

    CAS  Google Scholar 

  • Shida GM, Barros AR, Marques dos Reis C, Cavalcante de Amorim EL, Damianovic MHRZ, Silva EL (2009) Long-term stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor using heat treated anaerobic sludge inoculum. Int J Hydrogen Energy 34:3679–3688

    CAS  Google Scholar 

  • Shield MS, Montgomery SO, Cuskey SM, Chapman PJ, Pritchard PH (1989) Novel pathway of toluene catabolism in the trichloroethylene—degrading bacterium 04. Appl Environ Microbiol 55:1624–1629

    Google Scholar 

  • Show K–Y, Mao T, Lee D–J (2007) Optimisation of sludge disruption by sonication. Water Res 41:4741–4747

    CAS  Google Scholar 

  • Sidoli O’Connor C, Lepp NW, Edwards R, Sunderland G (2003) The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: A laboratory-scale feasibility study. Environ Monit Assess 84:141–158

    Google Scholar 

  • Sikdar SK, Grosse D, Rogut I (1998) Membrane technologies for remediating contaminated soils: a critical review. J Membr Sci 151:75–85

    CAS  Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Esley B, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonasputida strains G7 and NCIB 9816-4. Gene 127:31–37

    CAS  Google Scholar 

  • Singh R, Paul D, Jain RK (2006a) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    CAS  Google Scholar 

  • Singh KK, Singh AK, Hasan SH (2006b) Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresour Technol 97:994–1001

    CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121

    CAS  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008a) Bioremediation: environmental clean–up through pathway engineering. Curr Opin Biotechnol 19:437–444

    CAS  Google Scholar 

  • Singh S, Melo JS, Eapen S, D’Souza SF (2008b) Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol. Ecotoxicol Environ Saf 71:671–676

    CAS  Google Scholar 

  • Singh J, Kaur A, Vig AP, Rup PJ (2010) Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotoxicol Environ Saf 73:430–435

    CAS  Google Scholar 

  • Sinha RK, Bharambe G, Ryan D (2008) Converting wasteland into wonderland by earthworms-a low-cost nature’s technology for soil remediation: a case study of vermiremediation of PAHs contaminated soil. Environmentalist 28:466–475

    Google Scholar 

  • Skinner K, Wright N, Porter–Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145:234–237

    CAS  Google Scholar 

  • Skoog A, Vlahos P, Rogers KL, Amend JP (2007) Concentrations, distributions, and energy yields of dissolved neutral aldoses in a shallow hydrothermal vent system of Vulcano, Italy. Org Geochem 38:1416–1430

    CAS  Google Scholar 

  • Sood N, Patle S, Lal B (2010) Bioremediation of acidic oily sludge–contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6. Environ Sci Pollut Res 17:603–610

    CAS  Google Scholar 

  • Souza TS, Hencklein FA, Angelis DF, Gonçalves RA, Fontanetti CS (2009) The Allium cepa bioassay to evaluate landfarming soil, before and after the addition of rice hulls to accelerate organic pollutants biodegradation. Ecotoxicol Environ Saf 72:1363–1368

    CAS  Google Scholar 

  • Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31

    CAS  Google Scholar 

  • Stallwood B, Shears J, Williams PA, Hughes KA (2005) Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99:794–802

    CAS  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, George I, Agathos SN (2009) Molecular tools for monitoring and validating bioremediation. In: Advances in applied bioremediation, vol 17. Springer, Berlin, pp 339–353

  • Stomp A-M, Han K-H, Wilbert S, Gordon MP (1993) Genetic improvement of tree species for remediation of hazardous wastes. In Vitro Cell Dev Biol Plant 29:227–232

    Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027

    CAS  Google Scholar 

  • Sui H, Li X, Huang G, Jiang B (2006) A study on cometabolic bioventing for the in situ remediation of trichloroethylene. Environ Geochem Health 28:147–152

    Google Scholar 

  • Sun Y, Ji L, Wang W, Wang X, Wu J, Li H, Guo H (2009) Simultaneous removal of polycyclic aromatic hydrocarbons and copper from soils using ethyl lactate—amended EDDS solution. J Environ Qual 38:1591–1597

    CAS  Google Scholar 

  • Suthar S, Singh S (2008) Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Sci Total Environ 394:237–243

    CAS  Google Scholar 

  • Takeuchi I, Miyoshi N, Mizukawa K, Takada H, Ikemoto T, Omori K, Tsuchiya K (2009) Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by δ13C and δ15N isotope ratios as guides to trophic web structure. Mar Pollut Bull 58:663–671

    CAS  Google Scholar 

  • Talley WF, Sleeper PM (2006) Roadblocks to the implementation of biotreatment strategies. Ann NY Acad Sci 16–29

  • Tang SY, Bourne RA, Smith RL, Poliakoff M (2008) The 24 principles of green engineering and green chemistry: improvements productively. Green Chem 10:268–269

    CAS  Google Scholar 

  • Tatsuzawa T, Hao L, Ayame S, Shimomura T, Kataoka N, Miya A (2006) Population dynamics of anaerobic microbial consortia in thermophilic methanogenic sludge treating paper-containing solid waste. Water Sci Technol 54:113–119

    CAS  Google Scholar 

  • Telling ND, Coker VS, Cutting RS, van der Laan G, Pearce CI, Pattrick RAD, Arenholz E, Lloyd JR (2009) Remediation of Cr(VI) by biogenic magnetic nanoparticles: an X-ray magnetic circular dichroism study. Appl Phys Lett 95:163701–163703

    Google Scholar 

  • Teng Y, Luo Y-M, Huang C-Y, Long J, Li Z-G, Christie P (2008) Tolerance of grasses to heavy metals and microbial functional diversity in soils contaminated with copper mine tailings. Pedosphere 18:363–370

    CAS  Google Scholar 

  • Teng Y, Luo Y, Sun M, Liu Z, Li Z, Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol 101:3437–3443

    CAS  Google Scholar 

  • Tharakan J, Addagada A, Tomlinson D, Shafagati A (2004) Vermicomposting for the bioremediation of PCB congeners in SUPERFUND site media. In: Waste management and the environment II: international conference on waste management and the environment No. 2, Rhodes, pp 117–124

  • Thavasi R, Jayalakshmi S, Balasubramanian T et al (2008) Production and characterization of aglycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925

    CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    CAS  Google Scholar 

  • Thornton EC, Gilmore TJ, Olsen KB, Giblin JT, Phelan JM (2007) Treatment of a chromate-contaminated soil site by in situ gaseous reduction. Ground Water Monit Remed 27:56–64

    CAS  Google Scholar 

  • Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31:2570–2576

    CAS  Google Scholar 

  • Tognetti C, Laos F, Mazzarino MJ, Hernandez MT (2005) Composting vs. Vermicomposting: a comparison of end product quality. Compost Sci Util 13:6–13

    Google Scholar 

  • Tongbin C, Chaoyang W, Zechun H, Qifei H, Quanguo L, Zilian F (2002) Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation. Chin Sci Bull 47:902–905

    Google Scholar 

  • Tovanabootr A, Semprini L, Dolan ME, Azizian M, Magar VS, Debacker D, Leeson A, Kempisty CD (2001) Cometabolic air sparging field demonstration with propane to remediate trichloroethene and cis-dichloroethene. In: 6th International in situ and on site bioremediation symposium, San Diego, pp 145–153

  • Trasar-Cepeda C, Gil-Sotres F, Leirós MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319

    CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nanotoday 1:44–48

    Google Scholar 

  • Trinh Tan F, Cooper DG, Marić M, Nicell JA (2008) Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms. Polym Degrad Stabil 93:1479–1485

    CAS  Google Scholar 

  • Tsai Y-J (2008) Air distribution and size changes in the remediated zone after air sparging for soil particle movement. J Hazard Mater 158:438–444

    CAS  Google Scholar 

  • Tsai T-T, Kao C-M, Yeh T -Y, Liang S-H, Chien H-Y (2009) Remediation of fuel oil-contaminated soils by a three-stage treatment system. Environ Eng Sci 26:651–659

    CAS  Google Scholar 

  • Tsien HC, Hanson RS (1992) Soluble methane monooxygenase component trichloroethylene. Appl Environ Microbiol 58:953–960

    CAS  Google Scholar 

  • Tu C, Ma LQ, Zhang W, Cai Y, Harris WG (2003) Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.). Environ Pollut 124:223–230

    CAS  Google Scholar 

  • Tuli A, Sethi RP, Khanna PK et al (1985) Lactic acid production from whey permeate by immobilized Lactobacillus casei. Enzym Microbiol Technol 7:164–168

    CAS  Google Scholar 

  • Tunali S, Kiran I, Akar T (2005) Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner Eng 18:681–689

    CAS  Google Scholar 

  • Tundo P, Anastas P, StC Black D, Breen J, Collins T, Memoli S, Miyamoto J, Polyakoff M, Tumas W (2000) Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl Chem 72:1207–1228

    CAS  Google Scholar 

  • Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164

    CAS  Google Scholar 

  • Urum K, Pekdemir T, Ross D, Grigson S (2005) Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Chemosphere 60:334–343

    CAS  Google Scholar 

  • Valdez-Vazquez I, Sparling R, Risbey D, Rinderknecht-Seijas N, Poggi-Varaldo HM (2005) Hydrogen generation via anaerobic fermentation of paper mill wastes. Bioresour Technol 96:1907–1913

    CAS  Google Scholar 

  • Van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495

    Google Scholar 

  • van Schie PM, Young LY (2000) Biodegradation of phenol: mechanisms and applications. Bioremed J 4:1–18

    Google Scholar 

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038

    CAS  Google Scholar 

  • Vargas A, Soto G, Moreno J, Buitrón G (2000) Observer-based time-optimal control of an aerobic SBR for chemical and petrochemical wastewater treatment. Water Sci Technol 42:163–170

    CAS  Google Scholar 

  • Vatsala TM, Mohan Raj S, Manimaran A (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J Hydrogen Energy 33:5404–5415

    CAS  Google Scholar 

  • Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951

    CAS  Google Scholar 

  • Venkata Mohan S, Sirisha K, Chandrasekhara Rao N, Sarma PN, Jayarama Reddy S (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116:39–48

    Google Scholar 

  • Venkata Mohan S, Ramakrishna M, Shailaja S, Sarma PN (2007) Influence of soil–water ratio on the performance of slurry phase bioreactor treating herbicide contaminated soil. Bioresour Technol 98:2584–2589

    CAS  Google Scholar 

  • Venkata Mohan S, Prasanna D, Purushotham Reddy B, Sarma PN (2008) Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: Influence of bioaugmentation. Int Biodeterior Biodegrad 62:162–169

    Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    CAS  Google Scholar 

  • Vieira MGA, Oisiovici RM, Gimenes ML, Silva MGC (2008) Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresour Technol 99:3094–3099

    CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005a) Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep Purif Technol 44:53–59

    CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005b) Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 60:419–426

    CAS  Google Scholar 

  • Vinãs M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:8–18

    Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461

    CAS  Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Google Scholar 

  • Volesky B (2001) Detoxification of metal–bearing effluents: biosorption for the next century. Hydrometall 59:203–216

    CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    CAS  Google Scholar 

  • Volpe A, Del Moro G, Rossetti S, Tandoi V, Lopez A (2007) Remediation of PCE-contaminated groundwater from an industrial site in southern Italy: a laboratory-scale study. Process Biochem 42:1498–1505

    CAS  Google Scholar 

  • Wang HH (1999) Development and/or reclamation of bioresources with solid state fermentation. Proc Natl Sci Council 23:45–61

    CAS  Google Scholar 

  • Wang G-D, Chen X-Y (2007) Detoxification of soil phenolic pollutants by plant secretory enzyme, phytoremedation. Humana Press, Totowa, pp 49–57

    Google Scholar 

  • Wang S, Mulligan CN (2009) Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere 74:274–279

    Google Scholar 

  • Wang Y, Oyaizu H (2009) Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. J Hazard Mater 168:760–764

    CAS  Google Scholar 

  • Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris Vittata. uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    CAS  Google Scholar 

  • Wang H, Shan X, Wen B, Zhang S, Wang Z (2004) Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commoelina communis. Arch Environ Contamin Toxicol 47:185–192

    CAS  Google Scholar 

  • Waria M, Comfort SD, Onanong S, Satapanajaru T, Boparai H, Harris C, Snow DD, Cassada DA (2009) Field-scale cleanup of atrazine and cyanazine contaminated soil with a combined chemical–biological approach. J Environ Qual 38:1803–1811

    CAS  Google Scholar 

  • Webb C, Koutinas AA, Wang R (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv Biochem Eng Biotechnol 86:195–268

    Google Scholar 

  • Weber R (2007) Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies—review on current status and assessment gaps. Chemosphere 67:109–117

    Google Scholar 

  • Wei S, Zhou QX (2006) Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Environ Sci Pollut Res 13:151–155

    CAS  Google Scholar 

  • Wei S, Zhou Q, Koval PV (2006) Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci Total Environ 369:441–446

    CAS  Google Scholar 

  • Whang L-M, Liu P-WG, Ma C-C, Cheng S-S (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    CAS  Google Scholar 

  • White JC, Ross DW, Gent MPN et al (2006) Effect of mycorrhizal fungi on the phytoextraction of weathered p, p-DDE by Cucurbita pepo. J Hazard Mater 137:1750–1757

    CAS  Google Scholar 

  • Whiteley CG, Lee D-J (2006) Enzyme technology and biological remediation. Enzym Microb Technol 38:291–316

    CAS  Google Scholar 

  • Wild SR, Jones KC (1992) Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. Sci Total Environ 119:85–119

    CAS  Google Scholar 

  • Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 39:449–462

    Google Scholar 

  • Xi Y, Mallavarapu M, Naidu R (in press) Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—a SEM, TEM and XPS study. Mater Res Bull

  • Xia H (2008) Enhanced disappearance of dicofol by water hyacinth in water. Environ Technol 29:297–302

    CAS  Google Scholar 

  • Xiu Z, Jin Z, Li T, Mahendra S et al (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Biores technol 101:1141–1146

    CAS  Google Scholar 

  • Xu S-Y, Chen Y-X, Lin K-F, Chen X-C, Lin Q, Li F, Wang Z-W (2009) Removal of pyrene from contaminated soils by white clover. Pedosphere 19:265–272

    CAS  Google Scholar 

  • Yagi JM, Madsen EL (2009) Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 75:6478–6487

    CAS  Google Scholar 

  • Yang C, Song C, Mulchandani A, Qiao C (2010) Genetic engineering of Stenotrophomonas Strain YC-1 to possess a broader substrate range for organophosphates. J Agric Food Chem 58:6762–6766

    CAS  Google Scholar 

  • Yates GT, Smotzer T (2007) On the lag phase and initial decline of microbial growth curves. J Theor Biol 244:511–517

    Google Scholar 

  • Yen KM, Karl MR, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA, Chen KK (1991) Cloning and characterization of Pseudomonas mendocina KRI gene cluster encoding touene -4- monooxygenase. J Bacteriol 173:5315–5327

    CAS  Google Scholar 

  • Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR, Masson L, Whyte LG, Greer CW (2009) Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75:6258–6267

    CAS  Google Scholar 

  • Yoon JM, Oliver DJ, Shanks JV (2007) Phytotoxicity and phytoremediation of 2, 6-dinitrotoluene using a model plant, Arabidopsis thaliana. Chemosphere 68:1050–1057

    CAS  Google Scholar 

  • Yu J, Tian N-N, Wang K-J et al (2008) New thought on treatment and disposal of sludge of municipal sewage treatment plants. China Wat Wastewat 24:11–14

    CAS  Google Scholar 

  • Yuan SY, Su LM, Chang BV (2009) Biodegradation of phenanthrene and pyrene in compost-amended soil. J Environ Sci Health Part A 44:648–653

    CAS  Google Scholar 

  • Zadrazil F (2000) Is conversion of lignocellulosics into feed with white-rot fungi realizable? Practical problems of scale-up and technology. In: Van Griensven LJLD (ed) Science and cultivation of edible fungi. Balkema, Rotterdam

    Google Scholar 

  • Zervakis G, Papadopoulou K, Ehaliotis C et al (2005) Use of composts deriving from Mediterranean agro-industrial wastes in vegetable crops: effects on disease suppression and plant growth. In: de Kreij C, Warmenhoven M (eds) Proceedings of the international symposium on the use of composted organic wastes in horticulture, Wageningen

  • Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    CAS  Google Scholar 

  • Zhang G, Zhang P, Yang J, Chen Y (2007) Ultrasonic reduction of excess sludge from the activated sludge system. J Hazard Mater 145:515–519

    CAS  Google Scholar 

  • Zhang G, Yang J, Liu H, Zhang J (2009) Sludge ozonation: disintegration, supernatant changes and mechanisms. Bioresour Technol 100:1505–1509

    CAS  Google Scholar 

  • Zhang Y, Luo X-J, Wu J-P, Liu J, Wang J, Chen S-J, Mai B-X (2010) Contaminant pattern and bioaccumulation of legacy and emerging organhalogen pollutants in the aquatic biota from an e-waste recycling region in South China. Environ Toxicol Chem 24(4):852–859

    Google Scholar 

  • Zhao B, Poh CL (2008) Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8:874–881

    CAS  Google Scholar 

  • Zhao FJ, Lombi E, Breedon T et al (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    CAS  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different ferns species. New Phytol 156:27–31

    CAS  Google Scholar 

  • Zhou XB, Cébron A, Béguiristain T, Leyval C (2009) Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue. Chemosphere 77:709–713

    CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Google Scholar 

  • Ziagova M, Kyriakou G, Liakopoulou–Kyriakides M (2009) Co-metabolism of 2, 4-dichlorophenol and 4-Cl-m-cresol in the presence of glucose as an easily assimilated carbon source by Staphylococcus xylosus. J Hazard Mater 163:383–390

    CAS  Google Scholar 

  • Zoller U, Reznik A (2006) In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers. Environ Sci Pollut Res 13:392–397

    CAS  Google Scholar 

  • Zylstra GJ, Gibson DT (1989) Toluene degradation by Pseudomonasputida FI, nucleotide sequence of the tod CICBADE genes and their expression in E. coli. J Biol Chem 264:149400–149446

    Google Scholar 

Download references

Acknowledgments

We wish to express our deepest gratitude to all the researchers whose valuable data as reported in their respective publications and cited in this review have been of considerable significance in adding substance to this review. We are also grateful to our other colleagues and the anonymous reviewers whose constructive criticisms have benefited the manuscript, and brought it to its present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha A. Juwarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juwarkar, A.A., Singh, S.K. & Mudhoo, A. A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9, 215–288 (2010). https://doi.org/10.1007/s11157-010-9215-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-010-9215-6

Keywords

Navigation