Skip to main content
Log in

Molecular structure of hyaluronan: an introduction

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Hyaluronan is an unbranched polysaccharide of repeating disaccharides consisting of d-glucuronic acid and N-acetyl-d-glucosamine. Its strong water-retaining ability and visco-elastic properties have been broadly utilized in medical applications. Hyaluronan is an important constituent of the extracellular matrix whose physiological functions are manifested both as the substance is by itself as well as when it is being linked to various proteins. Compared with other biopolymers, such as nucleic acids and proteins, the structural chemistry of hyaluronan is much less developed. The scarce information about the metrical aspects of its structure shows no unusual features. Its secondary structure is characterized by intramolecular hydrogen bonding that is hard to distinguish from hydrogen bonding involving water molecules when hyaluronan is in aqueous medium. The tertiary structure of hyaluronan is sensitively dependent on its environment. The relative rigidity of the glycosidic bond and the intramolecular hydrogen bonds would tend to restrict rotational freedom and thus conformational variability. This, however, seems to be overwritten by the impact of molecular environment leading to a great variability of tertiary structure. A large number of conformations are possible and may be present as witnessed by their rather small free energy differences. Of the plethora of physical techniques and computational methods, X-ray crystallography and molecular dynamics calculations have proved to be the most fruitful so far. There are untapped possibilities in NMR spectroscopy for structural studies and quantum chemical calculations are also expected to contribute substantially to the structural chemistry of hyaluronan. There are many basic data as well as structural intricacies of hyaluronan that have so far eluded the researchers of its molecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References and Notes

  1. Quoted in Good IG (ed) (1962) The scientist speculates. Heinemann, London. The phrase has been repeated often in slightly different versions; the word research is replaced by discovery in one of its popular variants in Szent-Györgyi A (1957) Bioenergetics p 57. There is then a similar saying by Erwin Schrödinger, “…the task is not so much to see what no one has yet seen; but to think what nobody has yet thought about that which everybody sees.” In: Bertalanffy L (1952) Problems of life. Watts, London

  2. Almond A, Sheehan JK (2003) Predicting the molecular shape of polysaccharides from dynamic interactions with water. Glycobiology 13(4):255–264. doi:10.1093/glycob/cwg031

    Article  CAS  Google Scholar 

  3. Balazs EA, Laurent TC, Jeanloz RW (1986) Nomenclature of hyaluronic acid. Biochem J Lett 235:903

    CAS  Google Scholar 

  4. Scott JE (2007) Chemical morphology: the chemistry of our shape, in vivo and in vitro. Struct Chem 18:257–265. doi:10.1007/s11224-007-9155-0

    Article  CAS  Google Scholar 

  5. See, e.g., Hargittai M, Hargittai I (2008) Symmetry through the eyes of a chemist, 3rd edn. Springer-Verlag

  6. See, e.g., Lapcik L Jr, Lapcik L, De Smedt S, Demeester J, Chabrecek P (1998) Hyaluronan: preparation, structure, properties, and applications. Chem Rev 98:2663–2684

  7. See, e.g., Domenicano A, Hargittai I (eds) (1992) Accurate molecular structures. Oxford University Press, Oxford; Domenicano A, Hargittai I (eds) (2002) Strength from weakness: structural consequences of weak interactions in molecules, supramolecules, and crystals. Kluwer Academic Publishers, Dordrecht, Boston, London

  8. Cowman MK, Matsuoka S (2005) Experimental approaches to hyaluronan structure. Carbohydr Res 340:791–809

    Article  CAS  Google Scholar 

  9. Almond A (2007) Visions & reflections (minireview): hyaluronan. Cell Mol Life Sci 64:1591–1596

    Article  CAS  Google Scholar 

  10. See, e.g., Hargittai M, Hargittai I (2008) Symmetry through the eyes of a chemist, 3rd edn. Springer-Verlag

  11. See, e.g., Bernstein J (2002 and 2008) Polymorphism in molecular crystals. IUCr monographs on crystallography, no. 14. Oxford University Press, Oxford

  12. Meyer K, Palmer JW (1934) The polysaccharide of the vitreous humor. J Biol Chem 107:629–634

    CAS  Google Scholar 

  13. Meyer K, quoted in Kennedy JF, Phillips GO, Williams PA, Hascall VC (eds) (2002) Hyaluronan, vol. 1: chemical, biochemical and biological aspects. Woodhead Publ. Ltd., Cambridge, UK, p 23

  14. Roseman S (2001) Reflections on glycobiology. J Biol Chem 276:41527–41542. doi:10.1074/jbc.R100053200

    Article  CAS  Google Scholar 

  15. Rapport MM, Weissman B, Linker A, Meyer K (1951) Isolation of a crystalline disaccharide, hyalobiuronic acid, from hyaluronic acid. Nature 168:996–997. doi:10.1038/168996b0

    Article  CAS  Google Scholar 

  16. The hyaluronan literature usually describes it as a “linear” polymer, which is a misnomer if considering the geometrical meaning of the term. We make this note because in molecular structure studies the term linearity is well defined in referring to geometries with bond angles of 180°

  17. Weissmann B, Meyer K (1952) Structure of hyaluronic acid. The glucuronidic linkage. J Am Chem Soc 74:4729. Previously, there were some conflicting views as to the nature of the linkage between the monosaccharides: Jeanloz RW, Forchielli E (1951) Studies on hyaluronic acid and related substances. IV. Periodate oxidation. J Biol Chem 190:537–546; Blix G (1951) On the structure of hyaluronic acid. Acta Chem Scand 5:981–989

    Google Scholar 

  18. See, e.g., Laurent TC (1989) Introduction. In: The biology of hyaluronan. Ciba Foundation Symposium 143. Wiley, pp 1–5

  19. Scott JE, Cummings C, Brass A, Chen Y (1991) Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing–electron microscopy and computer simulation. Biochem J 274:699–705

    CAS  Google Scholar 

  20. Laurent TC, Hellsing K, Gelotte B (1964) Cross-linked gels of hyaluronic acid. Acta Chem Scand 18:274–275. doi:10.3891/acta.chem.scand.18-0274

    Article  CAS  Google Scholar 

  21. Laurent TC (1964) The interactions between polysaccharides and other macromolecules. 9. The exclusion of molecules from hyaluronic acid gels and solutions. Biochem J 93:106–112

    CAS  Google Scholar 

  22. Gross J (1948) Electron microscope studies of sodium hyaluronate. J Biol Chem 172:511–514

    CAS  Google Scholar 

  23. Fessler JH, Fessler LI (1966) Electron microscopic visualization of the polysaccharide hyaluronic acid. Proc Natl Acad Sci USA 56:141–147. doi:10.1073/pnas.56.1.141

    Article  CAS  Google Scholar 

  24. Preston BN, Davies M, Ogston AG (1965) The composition and physicochemical properties of hyaluronic acids prepared from ox synovial fluid and from a case of mesothelioma. Biochem J 96:449–474

    CAS  Google Scholar 

  25. Laurent TC (1957) A comparative study of physico-chemical properties of hyaluronic acid prepared according to different methods and from different tissues. Ark Kemi 11:487–496

    CAS  Google Scholar 

  26. Fraser JRE, Laurent TC (1996) Hyaluronan, chapter 5. In: Comper WD (ed) Extracellular matrix. volume 2: Molecular components and interactions. Harwood Academic Publishers, pp 141–199

  27. Ibid

  28. Ibid

  29. Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface Sci 8:396–400. doi:10.1016/S1359-0294(03)00099-2

    Article  CAS  Google Scholar 

  30. Laurent TC (1957) The amorphous X-ray diffractogram of hyaluronic acid. Ark Kemi 11:513–518

    CAS  Google Scholar 

  31. Hargittai I, Hargittai M (eds) (1988) Stereochemical applications of gas-phase electron diffraction. Part A: the electron diffraction technique. Part B: structural information for selected classes of compounds. VCH Publishers, New York

    Google Scholar 

  32. See, e.g., Hargittai I, Orville-Thomas WJ (eds) (1981) Diffraction studies on non-crystalline substances. Akadémiai Kiadó, Budapest and Elsevier, Amsterdam

  33. See, e.g., Domenicano A, Hargittai I (eds) (1992) Accurate molecular structures. Oxford University Press, Oxford

  34. See, e.g., Scott JE (1998) Chemical morphology of hyaluronan. In: Laurent TC (ed) The chemistry, biology and medical applications of hyaluronan and its derivatives. Wenner-Gren International Series, volume 72. Portland Press, London, pp 7–15

  35. Scott JE, Tigwell MJ (1978) Periodate oxidation and the shapes of glycosaminoglycuronans in solution. Biochem J 173:103–113

    CAS  Google Scholar 

  36. Atkins EDT, Meader D, Scott JE (1980) Model for hyaluronic acid incorporating 4 intramolecular hydrogen bonds. J Biol Macromol 2:318–319. doi:10.1016/0141-8130(80)90053-7

    Article  CAS  Google Scholar 

  37. Scott JE (1989) Secondary structures in hyaluronan solutions: chemical and biological implications. In: The biology of hyaluronan. Ciba Foundation Symposium 143. Wiley, pp 6–14

  38. Heatley F, Scott JE (1988) A water molecule participates in the secondary structure of hyaluronan. Biochem J 254:489–493

    CAS  Google Scholar 

  39. See, e.g., Lehn J-M (1985) Supramolecular chemistry: receptors, catalysts, and carriers. Science 227:849–856

  40. Scott JE, Heatley F (2002) Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spectroscopy. Biomacromolecules 3:547–553. doi:10.1021/bm010170j

    Article  CAS  Google Scholar 

  41. Balazs EA, Sundblad L (1959) Viscosity of hyaluronic acid solutions containing proteins. Acta Soc Med Ups 64(3–4):137–146

    CAS  Google Scholar 

  42. Blumberg BS, Ogston AG (1957) The effects of proteolytic enzymes on the hyaluronic acid complex of ox synovial fluid. Biochem J 66:342–346; Ibid. (1958) Further evidence on the protein complexes of some hyaluronic acids. 68:183–188

    Google Scholar 

  43. See, also, Blumberg BS (2002) Hepatitis B: the hunt for a killer virus. Princeton University Press, Princeton and Oxford; see in particular, p 220. Incidentally, A. G. Ogston was among the revered leaders of the polysaccharide field at the time. Baruch Blumberg was awarded the Nobel Prize in Physiology or Medicine in 1976 for unrelated discoveries

  44. See, e.g., Hruby KB (1990) From a forester’s boy to a university professor. Surv Ophthalmol 34:463–469

  45. See, e.g., Balazs EA (1983) Sodium hyaluronate in viscosurgery. In: Miller D, Stegman R (eds) Healon (sodium hyaluronate): a guide to its use in ophthalmic surgery. Wiley Medical, New York, pp 5–28

  46. Virchow RLK (1859) Die Cellular-pathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre, 2nd edn. Hirschwald, Berlin. See Balazs EA, Jeanloz RW (eds) (1965) The amino sugars: the chemistry and biology of compounds containing amino sugars. Volume IIA: distribution and biological role. Academic Press, New York

  47. Blix G, Snellman O (1945) On chondroitin sulphuric acid and hyaluronic acid. Arkiv Kemi 19A(32):1–19

    Google Scholar 

  48. Laurent TC (1955) Studies on hyaluronic acid in the vitreous body. J Biol Chem 216:263–271

    CAS  Google Scholar 

  49. Rowen JW, Brunish R, Bishop FW (1956) M and dimensions of isolated hyaluronic acid. Biochim Biophys Acta 19:480–489; Varga L, Gergely J (1957) Double refraction of flow studies on hyaluronic acid prepared from the vitreous body. Ibid 23:1–6

    Google Scholar 

  50. Laurent TC, Laurent UBG, Fraser JRE (1996) The structure and function of hyaluronan: an overview. Immunol Cell Biol 74:A1–A7. doi:10.1038/icb.1996.32

    Article  CAS  Google Scholar 

  51. Balazs EA, Watson D, Duff IF, Roseman S (1967) Hyaluronic acid in synovial fluid. Molecular parameters of hyaluronic acid in normal and arthritic fluids. Arthritis Rheum 10:357–376; Dahl LB, Dahl IMS, Engström-Laurent A, Granath K (1985) Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis 44:817–822

    Google Scholar 

  52. See, e.g., Polanyi M (1962) My time with X-rays and crystals. In: Ewald P (ed) Fifty years of X-ray crystallography. Utrecht, pp 629–636

  53. See, e.g., Morawetz H (1994) Herman Francis Mark: May 3, 1895–April 6, 1992. Biographical memoirs, vol. 68. National Academy of Sciences, Washington, DC, p 197

  54. See, e.g., Olby R (1994) The path to the double helix: the discovery of DNA. Dover Publications, New York (original publication, University of Washington Press, Seattle, 1974), pp 28–30

  55. Polanyi M (1962) My time with X-rays and crystals. In: Ewald P (ed) Fifty years of X-ray crystallography. Utrecht, pp 629–636

  56. Astbury WT, Street A (1931) X-ray studies of the structure of hair, wool and related fibres. I. General. Trans R Soc Lond A230:75–101

    CAS  Google Scholar 

  57. Hodgkin DC, Riley DP (1968) Some ancient history of protein X-ray analysis. In: Rich A, Davidson N (eds) Structural chemistry and molecular biology. W. H. Freeman, San Francisco, pp 15–28

    Google Scholar 

  58. Cochran W, Crick FCH, Vand V (1952) The structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Crystallogr 5:581–586. doi:10.1107/S0365110X52001635

    Article  CAS  Google Scholar 

  59. Bernal JD (1968) The material theory of life. Labour Monthly, July, pp 323–326

  60. Arnott S (1973) Fiber diffraction analysis of biopolymer molecules. Trans Am Crystallogr Assoc 9:31–56

    CAS  Google Scholar 

  61. Rich A (2004) The excitement of discovery. Annu Rev Biochem 73:1–37. doi:10.1146/annurev.biochem.73.011303.073945

    Article  CAS  Google Scholar 

  62. Ibid., pp 10–11

  63. Ibid., p 11; the structure was described in a short communication and, eventually, in a longer paper: Rich A, Crick FHC (1955) The structure of collagen. Nature 176:915–916; Rich A, Crick FHC (1961) The molecular structure of collagen. J Mol Biol 3:483–506

    Google Scholar 

  64. Bettelheim FA (1958) Crystalline sodium hyaluronate. Nature 182:1301–1302. doi:10.1038/1821301a0

    Article  CAS  Google Scholar 

  65. Haxaire K, Braccini I, Milas M, Rinuado M, Pérez S (2000) Conformational behavior of hyaluronan in relation to its physical properties as probed by molecular modeling. Glycobiology 10:587–594. doi:10.1093/glycob/10.6.587

    Article  CAS  Google Scholar 

  66. Atkins EDT, Isaac DH, Nieduszynski IA, Phelps CF, Sheehan JK (1974) The polyuronides: their molecular architecture. Polymer (Guildf) 15:263–271. doi:10.1016/0032-3861(74)90122-0

    Article  CAS  Google Scholar 

  67. Anderson NS, Campbell JW, Harding MM, Rees DA, Samuel JWB (1969) X-ray diffraction studies of polysaccharide sulphates: double helix models for κ- and ι-carrageenans. J Mol Biol 45:85–99. doi:10.1016/0022-2836(69)90211-3

    Article  CAS  Google Scholar 

  68. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738. doi:10.1038/171737a0

    Article  CAS  Google Scholar 

  69. Atkins EDT, Isaac DH, Nieduszynski IA, Phelps CF, Sheehan JK (1974) The polyuronides: their molecular architecture. Polymer 15:263–271. doi:10.1016/0032-3861(74)90122-0

    Article  CAS  Google Scholar 

  70. Scott JE, Heatley F (1999) Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. Proc Natl Acad Sci USA 96:4850–4855. doi:10.1073/pnas.96.9.4850

    Article  CAS  Google Scholar 

  71. Arnott S (1973) Fiber diffraction analysis of biopolymer molecules. Trans Am Crystallogr Assoc 9:31–56. See, in particular, comments and references under Note 10 (p 55)

    Google Scholar 

  72. Atkins EDT, Sheehan JK (1972) Structure for hyaluronic acid. Nat New Biol 235:253–254. doi:10.1038/235372a0

    Article  CAS  Google Scholar 

  73. Dea ICM, Moorhouse R, Rees DA, Arnott S, Guss JM, Balazs EA (1973) Hyaluronic acid: a novel, double helical molecule. Science 179:560–562. doi:10.1126/science.179.4073.560

    Article  CAS  Google Scholar 

  74. Atkins EDT, Sheehan JK (1973) Hyaluronates: relation between molecular conformations. Science 179:562–564. doi:10.1126/science.179.4073.562

    Article  CAS  Google Scholar 

  75. See, e.g., Guss JM, Hukins DWL, Smith PJC, Winter WT, Arnott S, Moorhouse R, Rees DA (1975) Hyaluronic acid: molecular conformations and interactions in two sodium salts. J Mol Biol 95:359–384

  76. Winter WT, Smith PJC, Arnott S (1975) Hyaluronic acid: structure of a fully extended 3-fold helical sodium salt and comparison with the less extended 4-fold helical forms. J Mol Biol 99:219–235. doi:10.1016/S0022-2836(75)80142-2

    Article  CAS  Google Scholar 

  77. Sheeehan JK, Gardner KH, Atkins EDT (1977) Hyaluronic acid: a double-helical structure in the presence of potassium at low pH and found also with the cations ammonium, rubidium and cesium. J Mol Biol 117:113–135. doi:10.1016/0022-2836(77)90027-4

    Article  Google Scholar 

  78. Mitra AK, Arnott S, Sheehan JK (1983) Hyaluronic acid: molecular conformation and interactions in the tetragonal form of the potassium salt containing extended chains. J Mol Biol 169:813–827. doi:10.1016/S0022-2836(83)80138-7

    Article  CAS  Google Scholar 

  79. Here, four-fold screw axis is indicated by 43. The corresponding symmetry transformation is translation and a 90° rotation; as this is a screw, 41 would refer to a right-handed helix and 43 refers to a left-handed helix; a non-chiral helix of four-fold rotational symmetry would be referred to as 42. For more detailed descriptions of screw axes, see, e.g., Hargittai M, Hargittai I (2008) Symmetry through the eyes of a chemist, 3rd edn. Springer-Verlag

  80. Mitra AK, Raghunathan S, Sheehan JK, Arnott S (1983) Hyaluronic acid: molecular conformations and interactions in the orthorhombic and tetragonal forms containing sinuous chains. J Mol Biol 169:829–859. doi:10.1016/S0022-2836(83)80139-9

    Article  CAS  Google Scholar 

  81. Arnott S, Mitra AK, Raghunathan S (1983) Hyaluronic acid double helix. J Mol Biol 169:861–872. doi:10.1016/S0022-2836(83)80140-5

    Article  CAS  Google Scholar 

  82. Ibid., p 871

  83. Sheehan J, Almond A (2001) Hyaluronan: static, hydrodynamic and molecular dynamic views. In Hascall VC, Yanagishita M (eds) Glyocoforum: Hyaluronan today. Seikagaku corporation glycoforum. http://www.glycoforum.gr.jp/science/hyaluronan/HA21/HA21E.html

  84. Almond A, Sheehan JK, Brass A (1997) Molecular dynamic simulations of the two disaccharides in aqueous solution. Glycobiology 7:597–604. doi:10.1093/glycob/7.5.597

    Article  CAS  Google Scholar 

  85. Almond A, Brass A, Sheehan JK (1998) Deducing polymeric structure from aqueous molecular dynamics simulations of oligosaccharides: predictions from simulations of hyaluronan tetrasaccharides compared with hydrodynamic and X-ray fibre diffraction data. J Mol Biol 284:1425–1437. doi:10.1006/jmbi.1998.2245

    Article  CAS  Google Scholar 

  86. Almond A, Brass A, Sheehan JK (1998) Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasaccharides: comparison of molecular dynamic simulations with available NMR data. Glycobiology 8:973–980. doi:10.1093/glycob/8.10.973

    Article  CAS  Google Scholar 

  87. Almond A, Sheehan JK (2003) Predicting the molecular shape of polysaccharides from dynamic interactions with water. Glycobiology 13:255–264. doi:10.1093/glycob/cwg031

    Article  CAS  Google Scholar 

  88. Donati A, Magnani A, Bonechi C, Barbucci R, Rossi C (2001) Solution structure of hyaluronic acid oligomers by experimental and theoretical NMR, and molecular dynamics simulation. Biopolymers 59:434–445. See, also, Cavalieri F, Chiessi E, Paci M, Paradossi G, Flaibani A, Cesaro A (2001) Conformational dynamics of hyaluronan in solution. 1. A 13C NMR study of oligomers. Macromolecules 34:99–109; Cowman MK, Hittner DM, Feder-Davis J (1996) 13C NMR studies of hyaluronan: conformational sensitivity to varied environments. Ibid. 29:2894–2902; Cowman MK, Feder-Davis J, Hittner DM (2001) 13C NMR studies of hyaluronan. 2. Dependence of conformational dynamics on chain length and solvent. Ibid. 34:110–115

    Google Scholar 

  89. Above Ref. 85, p 1433

  90. Kaufmann J, Möhle K, Hofmann HJ, Arnold K (1998) Molecular dynamics study of hyaluronic acid in water. J Mol Struct (Theochem) 422:109–121. doi:10.1016/S0166-1280(97)00084-5

    Article  CAS  Google Scholar 

  91. Almond A, Colebrooke SA, DeAngelis PL, Mahoney DJ, Day AJ, Blundell CD (2005) Dynamic conformational predictions for hyaluronan: using NMR to confirm aqueous simulations. In: Balazs EA, Hascall VC (eds) Hyaluronan: structure, metabolism, biological activities, therapeutic applications, vol I. Matrix Biology Institute, Edgewater, NJ, pp 3–6

    Google Scholar 

  92. Sheehan JK, Almond A, Hyaluronan: a divinely dynamical molecule. Ibid., pp 93–102

  93. Blundell CD, Reed MAC, Almond A (2006) Complete assignment of hyaluronan oligosaccharides up to hexasaccharides. Carbohydr Res 341:2803–2815. doi:10.1016/j.carres.2006.09.023

    Article  CAS  Google Scholar 

  94. Almond A, Brass A, Sheehan JK (2000) Oligosaccharides as a model system for understanding water-biopolymer interaction: hydrated dynamics of a hyaluronan decamer. J Phys Chem B 104:5634–5640. doi:10.1021/jp000402t

    Article  CAS  Google Scholar 

  95. Allinger NL (1992) Molecular mechanics. In: Domenicano A, Hargittai I (eds) Accurate molecular structures. Oxford University Press, Oxford, pp 336–354

    Google Scholar 

  96. Tafi A, Manetti F, Corelli F, Alcaro S, Botta M (2003) Structural flexibility of hyaluronan-oligomers as probed by molecular modeling. Pure Appl Chem 75:359–366. doi:10.1351/pac200375020359

    Article  CAS  Google Scholar 

  97. Resat H, Mezei M (2000) Calculating the local solvent chemical potential in crystal hydrates. Phys Rev E 62:7077–7081. doi:10.1103/PhysRevE.62.7077

    Article  CAS  Google Scholar 

  98. Miertus S, Bella J, Toffanin R, Matulova M, Paoletti S (1997) Conformational analysis on segments of charged polysaccharides. The case of hyaluronic acid dimer and chondrosine. J Mol Struct (Theochem) 395:437–449. doi:10.1016/S0166-1280(96)04867-1

    Article  Google Scholar 

  99. Neuhaus D, Williamson MP (2000) The nuclear Overhauser effect in structural and conformational analysis. In: Marchand AP (series ed) Methods in stereochemical analysis, 2nd edn. Wiley-VCH

  100. Scott JE (2008) Cartilage is held together by elastic glycan strings. Physiological and pathological implications. Biorheology. doi:10.3233/BIR-2008-0477

  101. See, e.g., Remko M, Hricovini M (2007) Theoretical study of structure and properties of hexuronic acid and D-glucosamine structural units of glycosaminoglycans. Struct Chem 18:537–547; Remko M, Swart M, Bickelhaupt FM (2007) Conformational behavior of basic monomeric building units of glycosaminoglycans: isolated systems and solvent effect. J Phys Chem B 111:2313–2321; Remko M, von der Lieth C-W (2007) Conformational structure of some trimeric and pentameric structural units of heparin. J Phys Chem A 111:13484–13491

  102. Bayraktar H, Akal E, Sarper O, Varnali T (2004) Modeling glycosaminoglycans—hyaluronan, chondroitin, chondroitin sulfate A, chondroitin sulfate C and keratin sulfate. J Mol Struct (Theochem) 683:121–132. doi:10.1016/j.theochem.2004.07.001

    Article  CAS  Google Scholar 

  103. Moulabbi M, Broch H, Robert L, Vasilescu D (1997) Quantum molecular modeling of hyaluronan. Ibid. 395–396, 477–508; Adrian-Scotto M, Abdallah KB, Mallet G, Vasilescu D (2003) Quantum molecular modeling of free radical saccharides from hyaluronan. Ibid 636, 89–113

    Google Scholar 

  104. Attributed; see, Perutz M (1998) I Wish I’d Made You Angry Earlier: essays on science and scientists. Oxford University Press, p 167

  105. A discussion of such differences for bond lengths was given in Hargittai M, Hargittai I (1992) Experimental and computed bond lengths: the importance of their differences. Int J Quant Chem 44:1057–1067

    Google Scholar 

  106. Scharfenberg P, Hargittai I (1984) On the structural differences of conformers (a study on 1,2-disubstituted ethanes and ethenes). J Mol Struct 112:65–70. doi:10.1016/0022-2860(84)80244-6

    Article  CAS  Google Scholar 

  107. Hargittai I, Levy JB (1999) Accessible geometrical changes. Struct Chem 10:387–389. doi:10.1023/A:1022099712835

    Article  CAS  Google Scholar 

  108. Horváth V, Hargittai I (2004) Geometrical changes and their energies in the formation of donor–acceptor complexes. Struct Chem 15:233–236. doi:10.1023/B:STUC.0000021532.01536.21

    Article  Google Scholar 

  109. Hargittai M, Hargittai I (2002) Aspects of structural chemistry in molecular biology. In: Domenicano A, Hargittai I (eds) Strength from weakness: structural consequences of weak interactions in molecules, supermolecules, and crystals. Kluwer Academic Publ., pp 91–119

  110. The number of reflections increases with the cube of the average cell dimension, while the mean intensity of the reflections decreases by the same amount. See, e.g., Dauter Z, Lamzin VS, Wilson KS (1995) Proteins at atomic resolution. Curr Opin Struct Biol 5:784–790. If for a small, organic molecule with a cell edge length of 10 Å, the number of reflections is 1000 and the mean intensity is 1; for a virus, with a cell length of 300 Å, the number of reflections is 27 million and the mean intensity is 1/27,000

    Google Scholar 

  111. Ibid

  112. See, e.g., Dauter Z, Lamzin VS, Wilson KS (1997) The benefits of atomic resolution. Curr Opin Mol Biol 7:681–688

  113. Hargittai M, Hargittai I (2002) Aspects of structural chemistry in molecular biology. In: Domenicano A, Hargittai I (eds) Strength from weakness: structural consequences of weak interactions in molecules, supermolecules, and crystals. Kluwer Academic Publ., pp 91–119, see, in particular, pp 104–106

Download references

Acknowledgements

The bulk of this review was prepared during the spring semester in 2008 when both authors enjoyed the hospitality and support of the Matrix Biology Institute in Edgewater, New Jersey. We are most grateful to Dr. Endre A. Balazs, the founder of the Institute and Dr. Janet Denlinger, its president, for the many kindnesses they extended to us whereby facilitating our research. It gives us pleasure to record here our gratitude to Dr. Balazs for the enormous amount of knowledge of and experience in the hyaluronan field he has shared with us over the years and for the inspiration we have received from him. We thank Professors Jo Demeester (Gent, Belgium), Attila Kovács (Budapest), John Scott (Manchester, UK), and Lev V. Vilkov (Moscow) for having read the manuscript at one stage or another. We are especially grateful to Professor Torvard C. Laurent (Uppsala) for his critical reading of our manuscript and for his instructive comments. We thank Ms. Joanne Caha (Edgewater) and Ms. Judit Szücs (Budapest) for their dedicated and unfailing technical assistance. We also acknowledge the support of the Hungarian National Research Funds (OTKA, No. T46183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Hargittai.

Additional information

Dedicated to Endre A. Balazs, pioneer in hyaluronan research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hargittai, I., Hargittai, M. Molecular structure of hyaluronan: an introduction. Struct Chem 19, 697–717 (2008). https://doi.org/10.1007/s11224-008-9370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9370-3

Keywords

Navigation