Skip to main content

Advertisement

Log in

A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Deep vein thrombosis is one of the common complications of orthopedic surgery, and pulmonary embolism which is one of its lethal complications can lead to mortality. Numerous efforts have been made to identify reliable and predictive biomarkers to detect the early signs of deep vein thrombosis. These studies have, however, not delivered any more informative candidates than the D-dimer that have been available. Cell-free microRNAs are present in a range of body fluids and have recently been shown to be useful biomarkers in many diseases. Therefore, the purpose of present study was to identify potential microRNA biomarkers of deep vein thrombosis that are present in serum. Serum samples were taken from 18 deep vein thrombosis patients and 20 age- and sex-matched controls. TaqMan microRNA array was used for an initial screening. Real-time PCR assay was implemented to confirm the concentrations of candidate microRNAs. We found that the serum levels of miR-582, miR-195 and miR-532 of deep vein thrombosis patients were higher than those of controls. miR-582 yielded an AUC (the areas under the ROC curve) of 0.959, and the other two microRNAs yielded an AUC of 1.000 in discriminating deep vein thrombosis from controls. These data hint that serum miR-582, miR-195 and miR-532 might have potential to be a novel noninvasive biomarkers for detection of DVT. And this is the first study suggesting that serum microNRAs might be used as biomarkers for deep vein thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stulberg BN, Insall JN, Williams GW, Ghelman B (1984) Deep-vein thrombosis following total knee replacement: an analysis of six hundred and thirty-eight arthroplasties. J Bone Joint Surg Am 66:194–201

    CAS  PubMed  Google Scholar 

  2. Stringer MD, Steadman CA, Hedges AR et al (1989) Deep vein thrombosis after elective knee surgery. J Bone Joint Surg Br 71:492–497

    CAS  PubMed  Google Scholar 

  3. Warwick D, Williams MH, Bannister GC (1995) Death and thromboembolic disease after total hip replacement: a series of 1162 cases with no routine chemical prophylaxis. J Bone Joint Surg Br 77:6–10

    CAS  PubMed  Google Scholar 

  4. Stein PD, Henry JW (1995) Prevalence of acute pulmonary embolism among patients in a general hospital and at autopsy. Chest 108:978–981

    Article  CAS  PubMed  Google Scholar 

  5. Lieberman JR, Geerts WH (1994) Prevention of venous thromboembolism after total hip and knee arthroplasty. J Bone Joint Surg Am 76:1239–1250

    CAS  PubMed  Google Scholar 

  6. Cohen SH, Ehrlich GE, Kauffman MS, Cope C (1973) Thrombophlebitis following knee surgery. J Bone Joint Surg Am 55:106–112

    CAS  PubMed  Google Scholar 

  7. Lynch AF, Bourne RB, Rorabeck CH, Rankin RN, Donald A (1988) Deep vein thrombosis and continuous passive motion after total knee arthroplasty. J Bone Joint Surg Am 70:11–14

    CAS  PubMed  Google Scholar 

  8. Turpie AG, Levine MN, Hirsh J et al (1986) A randomized controlled trial of a low-molecular weight heparin (enoxaparin) to prevent deep-vein thrombosis in patients undergoing elective hip surgery. N Engl J Med 315:925–929

    Article  CAS  PubMed  Google Scholar 

  9. Hull RD, Raskob GE, Gent M et al (1990) Effectiveness of intermittent pneumatic leg compression for preventing deep vein thrombosis after total hip replacement. JAMA 263:2313–2317

    Article  CAS  PubMed  Google Scholar 

  10. Hoek JA, Nurmohamed MT, Hamelynck KJ et al (1992) Prevention of deep vein thrombosis following total hip replacement by low molecular weight heparinoid. Thromb Haemost 67:28–32

    CAS  PubMed  Google Scholar 

  11. Coombes R (2005) Venous thromboembolism caused 25,000 deaths a year, say MPs. BMJ 330:559

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nosaka M, Ishida Y, Kimura A et al (2011) Absence of IFN-γ accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J Clin Invest 121:2911–2920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Colwell CW Jr, Berkowitz SD, Lieberman JR et al (2005) Oral direct thrombin inhibitor ximelagatran compared with warfarin for the prevention of venous thromboembolism after total knee arthroplasty. J Bone Joint Surg Am 87:2169–2177

    Article  PubMed  Google Scholar 

  14. Francis CW, Berkowitz SD, Comp PC et al (2003) Comparison of ximelagatran with warfarin for the prevention of venous thromboembolism after total knee replacement. N Engl J Med 349:1703–1712

    Article  CAS  PubMed  Google Scholar 

  15. Francis CW, Davidson BL, Berkowitz SD et al (2002) Ximelagatran versus warfarin for the prevention of venous thromboembolism after total knee arthroplasty. Ann Intern Med 137(8):648–655

    Article  CAS  PubMed  Google Scholar 

  16. Heit JA, Berkowitz SD, Bona R et al (1997) Efficacy and safety of low molecular weight heparin (ardeparin sodium) compared to warfarin for the prevention of venous thromboembolism after total knee replacement surgery: a double-blind, dose-ranging study. Thromb Haemost 77(1):32–38

    CAS  PubMed  Google Scholar 

  17. Hull RD, Pineo GF, Francis C et al (2000) Low-molecular-weight heparin prophylaxis using dalteparin in close proximity to surgery vs warfarin in hip arthroplasty patients: a double-blind, randomized comparison. Arch Intern Med 160(14):2199–2207

    Article  CAS  PubMed  Google Scholar 

  18. Hamulyak K, Lensing AW, van der Meer J et al (1995) Subcutaneous low-molecular weight heparin or oral anticoagulants for the prevention of deep-vein thrombosis in elective hip and knee replacement? Thromb Haemost 74(6):1428–1431

    CAS  PubMed  Google Scholar 

  19. Baarslag HJ, van Beek EJ, Koopman MM, Reekers JA (2002) Prospective study of color duplex ultrasonography compared with contrast venography in patients suspected of having deep venous thrombosis of the upper extremities. Ann Intern Med 136:865–872

    Article  PubMed  Google Scholar 

  20. Ruvkun G (2008) The perfect storm of tiny RNAs. Nat Med 14:1041–1045

    Article  CAS  PubMed  Google Scholar 

  21. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  22. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  PubMed  Google Scholar 

  25. Bonauer A, Carmona G, Iwasaki M et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713

    Article  CAS  PubMed  Google Scholar 

  26. Hoekstra M, van der Lans CAC, Halvorsen B et al (2010) The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 394(3):792–797

    Article  CAS  PubMed  Google Scholar 

  27. Bates SM, Jaeschke R, Stevens SM et al (2012) Diagnosis of DVT: antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 141(2 Suppl):e351S–e418S

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chen X, Hu Z, Wang W et al (2012) Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer 130:1620–1628

    Article  CAS  PubMed  Google Scholar 

  29. Liu R, Zhang C, Hu Z et al (2011) A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 47:784–791

    Article  CAS  PubMed  Google Scholar 

  30. Mattie MD, Benz CC, Bowers J et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24

    Article  PubMed Central  PubMed  Google Scholar 

  31. Uchino K, Takeshita F, Takahashi RU et al (2013) Therapeutic Effects of MicroRNA-582-5p and -3p on the inhibition of bladder cancer progression. Mol Ther 21:610–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Long G, Wang F, Duan Q et al (2012) Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS ONE 7:e50926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Deng H, Guo Y, Song H et al (2013) MicroRNA-195 and microRNA-378 mediate tumor growth suppression by epigenetical regulation in gastric cancer. Gene 518:351–359

    Article  CAS  PubMed  Google Scholar 

  34. Mao JH, Zhou RP, Peng AF et al (2012) microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett 4:1125–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Cheng Y, Kuang W, Hao Y et al (2012) Downregulation of miR-27a* and miR-532-5p and upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 macrophage cells. Inflammation 35:1308–1313

    Article  CAS  PubMed  Google Scholar 

  36. Willeit P, Zampetaki A, Dudek K et al (2013) Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 112:595–600

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chenyu Zhang (Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University) for technical assistance and English editing. This work was supported by grants from the National Natural Sciences of China (No. 30973046, No. 81271945), and China National Funds for Distinguished Young Scientists (No. 81125013).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Jiang.

Additional information

Jizheng Qin and Hongwei Liang contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Liang, H., Shi, D. et al. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombolysis 39, 215–221 (2015). https://doi.org/10.1007/s11239-014-1131-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-014-1131-0

Keywords

Navigation