Skip to main content
Log in

Current and Future Challenges for Automotive Catalysis: Engine Technology Trends and Their Impact

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Internal combustion engines were the technology of choice for propulsion and decentral power supply in the last century. Due to the high energy density of hydrocarbon based fuels that could so far not be reached by alternative technologies they will keep their leading role in most applications for the next decades. Although, its general functionality seems to be unchanged since its invention, the internal combustion engine has gone through substantial developments driven by various challenges. Within these, the pollution control has to be named first due to its role as the main driver for engine and aftertreatment development since the discussions on air quality which started 70 years ago. Meanwhile, all industrialized countries and most of the emerging countries have more or less stringent regulations for the main harmful exhaust components (HC, CO, NOX, Particulates). The second main challenge to be named is the reduction of CO2 emissions. Various engine technologies that are currently used to tackle these global trends lead to major impact on the exhaust aftertreatment components. To tackle these challenges the exhaust aftertreatment development has to be understood as integrated, multi-disciplinary and multi-scale design process considering engine design and operation, on board diagnosis and aftertreatment design and operation likewise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Miklautschisch M, Durst B, Henrici S, Unterweger G, Witt A (2015) Partikelquellenanalyse und Ableitung von PN-Reduktionsmaßnahmen am BMW Twin Turbo Motor. In: Berichte zur Energie- und Verfahrenstechnik, Motorische Verbrennung, HDT Ludwigsburg

  2. Befrui B, Berndorfer A, Breuer S, Hoffmann G, Piock W (2015) Effect of fuel pressure on GDi multi-hole injector particulate emissions and tip coking robustness. In: Berichte zur Energie- und Verfahrenstechnik, Motorische Verbrennung, HDT Ludwigsburg

  3. Mastrangelo G, Micelli D, Sacco D (2011) Extreme downsizing by the two-cylinder gasoline engine from Fiat. MTZ

  4. Schopp J, Düngen R, Fach H, Schünemann E (2013) BMW V8 gasoline engine with turbocharging, direct injection and fully variable valve gear. MTZ

  5. Thewes M, Baumgarten H, Nijs M, Hoppe P (2014) Future fuel consumption and emission concepts for boosted Gasoline engines. In: Engine 2020: Spark versus compression ignition in a new environment, Helmut List Halle, Graz

  6. Cairns A, Fraser N, Blaxill H (2008) Pre versus post compressor supply of cooled EGR for full load fuel economy in TC gasoline engine, SAE 2008 01 0425

  7. Grandin B, Angström H, Stalhammer P, Olofsson E (1998) Knock suppression in a TC SI engine by using cooled EGR, SAE 982476

  8. International Energy Agency (2012) Energy technology perspectives 2012: pathways to a clean energy system. International Energy Agency, Paris

    Google Scholar 

  9. Hoppe F, Heuser BT, Kremer M, Pischinger F, Dahmen, Hechinger S, Marquardt M (2015) Maßgeschneiderte Kraftstoffe für zukünftige Motorenkonzepte. In: Berichte zur Energie- und Verfahrenstechnik, Motorische Verbrennung, HDT Ludwigsburg

  10. Körfer T, Schnorbus T, Miccio M, Schaub J (2014) Emissionsbasierte AGR-Strategien für RDE beim Dieselmotor. MTZ, pp 26–33

  11. Körfer T, Schnorbus T, Kalenborn M, Kolbeck A, Bourgoin G, Cecur M, Raimond E (2010) Ganzheitliches dieselmotorisches Konzept zur Erfüllung niedrigster CO2-emissionen. 19. Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen

  12. Honardar S, Deppenkemper K, Nijs M, Pischinger S (2014) Potentiale von Ladungswechselvariabilitäten beim PKW-Dieselmotor. MTZ, pp 64–69

  13. Bhardwaj OP, Holderbaum B, Rohs H, Körfer T, Grussmann DE, Littmann K, Fricke F (2014) Analysis of fuel economy and emission reduction potential of insulated exhaust systems for modern diesel engines. 12. FAD Konferenz “Herausforderung - Abgasnachbehandlung für Dieselmotoren, Dresden

  14. Körfer T, Bick W, Holderbaum B, Wittka T (2014) Future, upgraded exhaust aftertreatment systems for Automotive Diesel engines for proper compliance with new regulations. International Conference: SIA Powertrain, Rouen

  15. Farrauto RJ, Gulati ST, Heck RM (2012) Catalystic air pollution control: commercial technology. John Wiley & Sons, New York

    Google Scholar 

  16. Otto E, Albrecht F, Liebl J (1998) The development of BMW catalyst concepts for LEV/ULEV and EU III/IV legislations 6 cylinder engine with close coupled main catalyst, SAE Technical Paper 980418

  17. Janssen AJ, Kremer FW, Baron JH, Muether M, Pischinger S, Klankermayer J (2011) Tailor-made fuels from biomass for homogeneous low-temperature diesel combustion. Energy & Fuels 25:4734–4744

    Article  CAS  Google Scholar 

  18. Hoppe F, Heuser B, Thewes M, Kremer K, Pischinger S, Dahmen M, Hechinger M, Marquardt W (2016) Tailor-made fuels for future engine concepts. Int J Eng Res. doi:10.1177/1468087415603005

    Google Scholar 

  19. Heuser B, Laible T, Jakob M, Kremer K, Pischinger S (2014) C8-oxygenates for clean diesel combustion, SAE 2014-01-1253

  20. Bhardwaj OP, Lüers B, Kolbeck AF, Koerfer T, Kremer F, Pischinger S, von Berg A, Roth G (2013) Tailor made bio fuels: effect of fuel properties on the soot microstructure and consequences on particle filter regeneration. Proceedings of the ASME International Combustion Engine Division’s 2013 Fall Technical Conference, Dearborn, Michigan, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pischinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pischinger, S. Current and Future Challenges for Automotive Catalysis: Engine Technology Trends and Their Impact. Top Catal 59, 834–844 (2016). https://doi.org/10.1007/s11244-016-0557-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0557-3

Keywords

Navigation