Skip to main content

Advertisement

Log in

HIV Tat potentiates cell toxicity in a T cell model for sulphamethoxazole-induced adverse drug reactions

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

HIV infection results in severe immune dysfunction with ensuing sequelae that includes characteristic opportunistic infections. Pneumocystis pneumonia (PCP) is one of the most common of these infections and is routinely treated with sulphamethaxazole (SMX). Although this drug is known to cause hypersensitivity adverse drug reactions (ADRs) in 0.1% of the general population, the incidence of these ADRs increases tenfold in the HIV-positive population. The HIV-1 trans-activator of transcription (HIV-1 Tat) together with the drug metabolite sulphamethaxazole-hydroxylamine (SMX-HA) have both been reported to be factors in these hypersensitivity ADRs. In this study, we use an inducible, Tat-expressing vector system to show that the level of Tat expression contributes to the cellular sensitivity of Jurkat T cells to SMX-HA. We further demonstrated that apoptosis is the likely mechanism by which this occurs. Thus, our data provide insight into the significant increase of SMX-related ADRs during the transition between HIV-1 infection and AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.C. Huigen, W. Kamp, H.S. Nottet, Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection. Eur. J. Clin. Invest. 34(1), 57–66 (2004). doi:https://doi.org/10.1111/j.1365-2362.2004.01282.x

    Article  CAS  PubMed  Google Scholar 

  2. D.C. Douek, L.J. Picker, R.A. Koup, T cell dynamics in HIV-1 infection. Annu. Rev. Immunol. 21, 265–304 (2003). doi:https://doi.org/10.1146/annurev.immunol.21.120601.141053

    Article  CAS  PubMed  Google Scholar 

  3. A. Pugliese et al., A review of HIV-1 Tat protein biological effects. Cell Biochem. Funct. 23(4), 223–227 (2005). doi:https://doi.org/10.1002/cbf.1147

    Article  CAS  PubMed  Google Scholar 

  4. C. Brigati et al., HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol. Lett. 220(1), 57–65 (2003). doi:https://doi.org/10.1016/S0378-1097(03)00067-3

    Article  CAS  PubMed  Google Scholar 

  5. M.H. Malim et al., Immunodeficiency virus rev trans-activator modulates the expression of the viral regulatory genes. Nature 335(6186), 181–183 (1988). doi:https://doi.org/10.1038/335181a0

    Article  CAS  PubMed  Google Scholar 

  6. M. Li-Weber et al., T cell activation-induced and HIV tat-enhanced CD95(APO-1/Fas) ligand transcription involves NF-kappaB. Eur. J. Immunol. 30(2), 661–670 (2000). doi:https://doi.org/10.1002/1521-4141(200002)30:2<661::AID-IMMU661>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  7. C. de la Fuente et al., Gene expression profile of HIV-1 Tat expressing cells: a close interplay between proliferative and differentiation signals. BMC Biochem. 3, 14 (2002). doi:https://doi.org/10.1186/1471-2091-3-14

    Article  PubMed  PubMed Central  Google Scholar 

  8. C. Ambrosino et al., HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein beta (NF-IL6) transcription factors. J. Biol. Chem. 272(23), 14883–14892 (1997). doi:https://doi.org/10.1074/jbc.272.23.14883

    Article  CAS  PubMed  Google Scholar 

  9. K.J. Sastry et al., HIV-1 tat gene induces tumor necrosis factor-beta (lymphotoxin) in a human B-lymphoblastoid cell line. J. Biol. Chem. 265(33), 20091–20093 (1990)

    CAS  PubMed  Google Scholar 

  10. C.J. Li et al., Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 92(12), 5461–5464 (1995). doi:https://doi.org/10.1073/pnas.92.12.5461

    Article  CAS  PubMed  Google Scholar 

  11. S.C. Flores et al., Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl. Acad. Sci. USA 90(16), 7632–7636 (1993). doi:https://doi.org/10.1073/pnas.90.16.7632

    Article  CAS  PubMed  Google Scholar 

  12. J. Choi et al., Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275(5), 3693–3698 (2000). doi:https://doi.org/10.1074/jbc.275.5.3693

    Article  CAS  PubMed  Google Scholar 

  13. R. Buhl et al., Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 2(8675), 1294–1298 (1989). doi:https://doi.org/10.1016/S0140-6736(89)91909-0

    Article  CAS  PubMed  Google Scholar 

  14. F.J. Staal et al., Intracellular glutathione levels in T cell subsets decrease in HIV-infected individuals. AIDS Res. Hum. Retroviruses 8(2), 305–311 (1992)

    Article  CAS  PubMed  Google Scholar 

  15. S.L. Walmsley et al., Oxidative stress and thiol depletion in plasma and peripheral blood lymphocytes from HIV-infected patients: toxicological and pathological implications. AIDS 11(14), 1689–1697 (1997). doi:https://doi.org/10.1097/00002030-199714000-00005

    Article  CAS  PubMed  Google Scholar 

  16. S.R. Bartz, M. Emerman, Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J. Virol. 73(3), 1956–1963 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. M.O. Westendorp et al., Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375(6531), 497–500 (1995). doi:https://doi.org/10.1038/375497a0

    Article  CAS  PubMed  Google Scholar 

  18. A. Morris et al., Current epidemiology of Pneumocystis pneumonia. Emerg. Infect. Dis. 10(10), 1713–1720 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  19. P.A. Masters et al., Trimethoprim-sulfamethoxazole revisited. Arch. Intern. Med. 163(4), 402–410 (2003). doi:https://doi.org/10.1001/archinte.163.4.402

    Article  CAS  PubMed  Google Scholar 

  20. J.C. Roujeau, R.S. Stern, Severe adverse cutaneous reactions to drugs. N. Engl. J. Med. 331(19), 1272–1285 (1994). doi:https://doi.org/10.1056/NEJM199411103311906

    Article  CAS  PubMed  Google Scholar 

  21. A. Carr et al., Patterns of multiple-drug hypersensitivities in HIV-infected patients. AIDS 7(11), 1532–1533 (1993)

    CAS  PubMed  Google Scholar 

  22. C.M. Davis, W.T. Shearer, Diagnosis and management of HIV drug hypersensitivity. J. Allergy Clin. Immunol. 121(4), 826–832.e5 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. D. Lin, M.J. Tucker, M.J. Rieder, Increased adverse drug reactions to antimicrobials and anticonvulsants in patients with HIV infection. Ann. Pharmacother. 40(9), 1594–1601 (2006). doi:https://doi.org/10.1345/aph.1G525

    Article  CAS  PubMed  Google Scholar 

  24. M.J. Rieder et al., Synthesis and in vitro toxicity of hydroxylamine metabolites of sulfonamides. J. Pharmacol. Exp. Ther. 244(2), 724–728 (1988)

    CAS  PubMed  Google Scholar 

  25. D.A. Hess et al., Cytotoxicity of sulfonamide reactive metabolites: apoptosis and selective toxicity of CD8(+) cells by the hydroxylamine of sulfamethoxazole. FASEB J. 13(13), 1688–1698 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. A. Carr et al., In vitro cytotoxicity as a marker of hypersensitivity to sulphamethoxazole in patients with HIV. Clin. Exp. Immunol. 94(1), 21–25 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M.J. Rieder et al., Toxicity of sulfonamide-reactive metabolites in HIV-infected, HTLV-infected, and noninfected cells. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 8(2), 134–140 (1995). doi:https://doi.org/10.1097/00042560-199502000-00004

    Article  CAS  PubMed  Google Scholar 

  28. J. Arp et al., Hypersensitivity of HIV-1-infected cells to reactive sulfonamide metabolites correlated to expression of the HIV-1 viral protein tat. J. Pharmacol. Exp. Ther. 314(3), 1218–1225 (2005). doi:https://doi.org/10.1124/jpet.105.085050

    Article  CAS  PubMed  Google Scholar 

  29. D. Calista et al., Changing morbidity of cutaneous diseases in patients with HIV after the introduction of highly active antiretroviral therapy including a protease inhibitor. Am. J. Clin. Dermatol. 3(1), 59–62 (2002). doi:https://doi.org/10.2165/00128071-200203010-00006

    Article  PubMed  Google Scholar 

  30. A.D. Frankel, C.O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6), 1189–1193 (1988). doi:https://doi.org/10.1016/0092-8674(88)90263-2

    Article  CAS  PubMed  Google Scholar 

  31. C.A. Strathdee, M.R. McLeod, J.R. Hall, Efficient control of tetracycline-responsive gene expression from an autoregulated bi-directional expression vector. Gene 229(1–2), 21–29 (1999). doi:https://doi.org/10.1016/S0378-1119(99)00045-1

    Article  CAS  PubMed  Google Scholar 

  32. M.L. Wong, J.F. Medrano, Real-time PCR for mRNA quantitation. Biotechniques 39(1), 75–85 (2005). doi:https://doi.org/10.2144/05391RV01

    Article  CAS  PubMed  Google Scholar 

  33. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983). doi:https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  34. D.R. Green, Apoptotic pathways: ten minutes to dead. Cell 121(5), 671–674 (2005). doi:https://doi.org/10.1016/j.cell.2005.05.019

    Article  CAS  PubMed  Google Scholar 

  35. R.N. Blum et al., Comparative trial of dapsone versus trimethoprim/sulfamethoxazole for primary prophylaxis of Pneumocystis carinii pneumonia. J. Acquir. Immune Defic. Syndr. 5(4), 341–347 (1992)

    CAS  PubMed  Google Scholar 

  36. J.R. Sullivan, N.H. Shear, The drug hypersensitivity syndrome: what is the pathogenesis? Arch. Dermatol. 137(3), 357–364 (2001)

    CAS  PubMed  Google Scholar 

  37. M.J. Rieder, G.A. Dekaban, Deja vu all over again: adverse reactions to nonnucleoside reverse transcriptase inhibitors. Ann. Pharmacother. 34(7–8), 940–942 (2000). doi:https://doi.org/10.1345/aph.10064

    Article  CAS  PubMed  Google Scholar 

  38. C. Paul et al., Apoptosis as a mechanism of keratinocyte death in toxic epidermal necrolysis. Br. J. Dermatol. 134(4), 710–714 (1996). doi:https://doi.org/10.1111/j.1365-2133.1996.tb06976.x

    Article  CAS  PubMed  Google Scholar 

  39. P. Paquet, G.E. Pierard, Keratinocyte injury in drug-induced toxic epidermal necrolysis: simultaneous but distinct topographic expression of CD95R and calprotectin. Int. J. Mol. Med. 10(2), 145–147 (2002)

    PubMed  Google Scholar 

  40. R. Abe et al., Toxic epidermal necrolysis and Stevens-Johnson syndrome are induced by soluble Fas ligand. Am. J. Pathol. 162(5), 1515–1520 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Lewen et al., Oxidative stress-dependent release of mitochondrial cytochrome c after traumatic brain injury. J. Cereb. Blood Flow Metab. 21(8), 914–920 (2001). doi:https://doi.org/10.1097/00004647-200108000-00003

    Article  CAS  PubMed  Google Scholar 

  42. P.G. Sullivan et al., Cytochrome c release and caspase activation after traumatic brain injury. Brain Res. 949(1–2), 88–96 (2002). doi:https://doi.org/10.1016/S0006-8993(02)02968-2

    Article  CAS  PubMed  Google Scholar 

  43. C.J. Li et al., Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268(5209), 429–431 (1995). doi:https://doi.org/10.1126/science.7716549

    Article  CAS  PubMed  Google Scholar 

  44. I.W. Park et al., HIV-1 Tat induces microvascular endothelial apoptosis through caspase activation. J. Immunol. 167(5), 2766–2771 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. C.C. Liu et al., Apoptosis, complement and systemic lupus erythematosus: a mechanistic view. Curr. Dir. Autoimmun. 7, 49–86 (2004). doi:https://doi.org/10.1159/000075687

    Article  CAS  PubMed  Google Scholar 

  46. A.C. Rego, C.R. Oliveira, Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. 28(10), 1563–1574 (2003). doi:https://doi.org/10.1023/A:1025682611389

    Article  CAS  PubMed  Google Scholar 

  47. M. Jaattela, Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23(16), 2746–2756 (2004). doi:https://doi.org/10.1038/sj.onc.1207513

    Article  PubMed  Google Scholar 

  48. S.M. Raidel et al., Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. Am. J. Physiol. Heart Circ. Physiol. 282(5), H1672–H1678 (2002)

    Article  CAS  PubMed  Google Scholar 

  49. M.O. Westendorp et al., HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J. 14(3), 546–554 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Muthumani et al., Mechanism of HIV-1 viral protein R-induced apoptosis. Biochem. Biophys. Res. Commun. 304(3), 583–592 (2003). doi:https://doi.org/10.1016/S0006-291X(03)00631-4

    Article  CAS  PubMed  Google Scholar 

  51. V.S. Yedavalli et al., Human immunodeficiency virus type 1 Vpr interacts with antiapoptotic mitochondrial protein HAX-1. J. Virol. 79(21), 13735–13746 (2005). doi:https://doi.org/10.1128/JVI.79.21.13735-13746.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Y. Yang, Monocytes treated with human immunodeficiency virus Tat kill uninfected CD4(+) cells by a tumor necrosis factor-related apoptosis-induced ligand-mediated mechanism. J. Virol. 77(12), 6700–6708 (2003). doi:https://doi.org/10.1128/JVI.77.12.6700-6708.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes for Health Research (CIHR) and the CIHR-GSK Chair in Paediatric Clinical Pharmacology (to M.J.R.) and a CHIR Canada Graduate Scholarships Doctoral Award (to K.A.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory A. Dekaban or Michael Rieder.

Additional information

Kemi Adeyanju and Adriana Krizova contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeyanju, K., Krizova, A., Gilbert, P.A. et al. HIV Tat potentiates cell toxicity in a T cell model for sulphamethoxazole-induced adverse drug reactions. Virus Genes 38, 372–382 (2009). https://doi.org/10.1007/s11262-009-0344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-009-0344-3

Keywords

Navigation