Skip to main content
Log in

A novel strategy for the determination of a rhabdovirus genome and its application to sequencing of Eggplant mottled dwarf virus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

A novel strategy employing the rhabdovirus untranslated conserved intergenic regions was developed and applied successfully for the determination of the complete nucleotide sequence of Eggplant mottled dwarf virus (EMDV). The EMDV genome contains seven open reading frames with the same organization as Potato yellow dwarf virus (PYDV), the type species of the genus Nucleorhabdovirus. These two species encode five core genes [nucleocapsid (N), phosphoprotein (P), matrix (M), glycoprotein (G), and the polymerase (L)] like other viruses of the genus and an additional one (X), located between N and P, giving rise to a protein with currently unknown function. Furthermore, both EMDV and PYDV contain a gene (Y), inserted between P and M, which probably encodes the virus movement protein, in concordance with the rest of the plant-infecting rhabdoviruses. Phylogenetic analysis of the polymerase gene confirmed the classification of EMDV within the genus Nucleorhabdovirus and showed a close evolutionary relationship to PYDV. The novel sequencing strategy developed is a useful tool for the genome determination of yet uncharacterized rhabdoviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P.J. Walker, R.G. Dietzgen, D.A. Joubert, K.R. Blasdell, Virus Res. 162, 110–125 (2011)

    Article  PubMed  CAS  Google Scholar 

  2. A.O. Jackson, R.G. Dietzgen, M.M. Goodin, J.N. Bragg, M. Deng, Annu. Rev. Phytopathol. 43, 623–660 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. M.G. Redinbaugh, S.A. Hogenhout, Curr. Top. Microbiol. 292, 143–153 (2005)

    Article  CAS  Google Scholar 

  4. Z.F. Fu, Curr. Top. Microbiol. 292, 1–24 (2005)

    Article  CAS  Google Scholar 

  5. D. Ghosh, R.E. Brooks, R. Wang, J. Lesnaw, M.M. Goodin, Virus Res. 135, 26–35 (2008)

    Article  PubMed  CAS  Google Scholar 

  6. A. Massah, K. Izadpanah, A.R. Afsharifar, S. Winter, Archiv. Virol. 153, 1041–1047 (2008)

    Article  CAS  Google Scholar 

  7. C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball, Virus taxonomy (Elsevier Academic Press, San Diego, 2005), p. 1259

    Google Scholar 

  8. G.P. Martelli, J. Gen. Virol. 5, 319–320 (1969)

    Article  PubMed  CAS  Google Scholar 

  9. N.I. Katis, E.K. Chatzivassiliou, C.M. Clay, V.I. Maliogka, P. Pappi, K. Efthimiou, C.I. Dovas, A.D. Avgelis, J. Plant Pathol. 93, 353–362 (2011)

    CAS  Google Scholar 

  10. X.Y. Chen, Z.L. Luo, R.X. Fang, Chinese Sci. Bull. 43, 745–748 (1998)

    Google Scholar 

  11. K.B. Scholthof, B.I. Hillman, B. Modrell, L.A. Heaton, A.O. Jackson, Virology 204, 279–288 (1994)

    Article  PubMed  CAS  Google Scholar 

  12. F. Tanno, A. Nakatsu, S. Toriyama, M. Kojima, Complete nucleotide sequence of Northern cereal mosaic virus and its genome organization. Archiv. Virol. 145, 1373–1384 (2000)

    Article  CAS  Google Scholar 

  13. C.H. Tsai, M.G. Redinbaugh, K.J. Willie, S. Reed, M. Goodin, S. Hogenhout, J. Virol. 9, 5304–5314 (2005)

    Article  Google Scholar 

  14. Y. Huang, Z. Heng, Z. Luo, X. Chen, R.X. Fang, J. Gen. Virol. 84, 2259–2264 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Y. Huang, Y. Geng, X. Ying, X. Chen, R.X. Gang, J. Virol. 79, 2108–2114 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. S.E. Reed, C.W. Tsai, K.J. Willie, M.G. Redinbaugh, S.A. Hogenhout, J. Virol. Methods 129, 91–96 (2005)

    Article  PubMed  CAS  Google Scholar 

  17. A. Bandyopadhyay, K. Kopperud, G. Anderson, K. Martin, M. Goodin, Virology 402, 61–71 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. V.I. Maliogka, C.I. Dovas, L. Lotos, K. Efthimiou, N.I. Katis, Archiv. Virol. 154, 209–218 (2009)

    Article  CAS  Google Scholar 

  19. H. Bourhy, J.A. Cowley, F. Larrous, E.C. Holmes, P.J. Walker, J. Gen. Virol. 86, 2849–2858 (2005)

    Article  PubMed  CAS  Google Scholar 

  20. R.C. Edgar, Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. F. Abascal, R. Zardoya, D. Posada, Bioinformatics 21, 2104–2105 (2004)

    Article  Google Scholar 

  22. S. Guindon, O. Gascuel, Syst. Biol. 52, 696–704 (2003)

    Article  PubMed  Google Scholar 

  23. M. El Maataoui, B.E.L. Lockhart, D.E. Lesemann, Phytopathology 75, 109–115 (1985)

    Article  Google Scholar 

  24. G.P. Martelli, A. Hamadi, Plant Pathol. 35, 595–597 (1986)

    Article  Google Scholar 

  25. G.P. Martelli, C. Cherif, J. Phytopathol. 119, 32–41 (1987)

    Article  Google Scholar 

  26. A.M. Al-Musa, B. Lockhart, J. Phytopathol. 128, 283–287 (1990)

    Article  Google Scholar 

  27. D. Danesh, B.E.L. Lockhart, Plant Dis. 73, 856–858 (1989)

    Article  Google Scholar 

  28. A. Polverari, M.A. Castellano, M. Marte, J. Phytopathol. 144, 25–27 (1996)

    Article  Google Scholar 

  29. A. De Stradis, G. Parrella, C. Vovlas, A. Ragozzino, J. Plant Pathol. 90, 359–361 (2008)

    Google Scholar 

  30. D. Kostova, V. Masenga, R.G. Milne, V. Lisa, Plant Pathol. 50, 804 (2001)

    Article  Google Scholar 

  31. P. Roggero, R.G. Milne, V. Masenga, P. Ogliara, Plant Dis. 79, 321 (1995)

    Article  Google Scholar 

  32. J. Aramburu, L. Galipienso, T. Tornos, M. Matas, Plant Pathol. 55, 565 (2006)

    Article  Google Scholar 

  33. I. Mavrič, M. Tušek Žnidarič, M. Viršček Marn, P. Dolničar, N. Mehle, D.E. Lesemann, M. Ravnikar, Plant Pathol. 55, 566 (2006)

    Article  Google Scholar 

  34. W. Della Giustina, M. Javoy, P. Bansept, E. Morel, H. Balasse, N. Goussard, C. Passard, PHM-Revue Horticole 420, 40–43 (2000)

    Google Scholar 

  35. G. Babaie, K. Izadpanah, J. Phytopathol. 151, 679–682 (2003)

    Article  Google Scholar 

  36. U. Melcher, J. Gen. Virol. 81, 257–266 (2000)

    PubMed  CAS  Google Scholar 

  37. M.M. Goodin, R. Chakrabarty, S. Yelton, K. Martin, A. Clark, R. Brooks, J. Gen. Virol. 88, 1810–1820 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. T. Wetzel, R.G. Dietzgen, J.L. Dale, Virology 200, 401–412 (1994)

    Article  PubMed  CAS  Google Scholar 

  39. T.J. Choi, J.D. Wagner, A.O. Jackson, Virology 202, 33–40 (1994)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Stephan Winter (DSMZ-Deutche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) for providing the EMDV-specific antiserum. The authors also thank Drs Richard Gibson (Agriculture, Health and Environment Department, University of Greenwich, U.K.) and Amalia Kati (School of Agriculture, Aristotle University of Thessaloniki) for Language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos I. Katis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappi, P.G., Dovas, C.I., Efthimiou, K.E. et al. A novel strategy for the determination of a rhabdovirus genome and its application to sequencing of Eggplant mottled dwarf virus . Virus Genes 47, 105–113 (2013). https://doi.org/10.1007/s11262-013-0911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-013-0911-5

Keywords

Navigation