Skip to main content
Log in

Characterization of an insect-specific flavivirus (OCFVPT) co-isolated from Ochlerotatus caspius collected in southern Portugal along with a putative new Negev-like virus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

We describe the isolation and characterization of an insect-specific flavivirus (ISF) from Ochlerotatus caspius (Pallas, 1771) mosquitoes collected in southern Portugal. The RNA genome of this virus, tentatively designated OCFVPT, for O. caspius flavivirus from Portugal, encodes a polyprotein showing all the features expected for a flavivirus. As frequently observed for ISF, the viral genomes seems to encode a putative Fairly Interesting Flavivirus ORF (FIFO)-like product, the synthesis of which would occur as a result of a −1 translation frameshift event. OCFVPT was isolated in the C6/36 Stegomyia albopicta (= Aedes albopictus) cell line where it replicates rapidly, but failed to replicate in Vero cells in common with other ISFs. Unlike some of the latter, however, the OCFVPT genome does not seem to be integrated in the mosquito cells we tested. Phylogenetic analyses based on partial ISF NS5 nucleotide sequences placed OCFVPT among recently published viral strains documented from mosquitoes collected in the Iberian Peninsula, while analyses of ORF/E/NS3/or NS5 amino acid sequences cluster OCFVPT with HANKV (Hanko virus), an ISF recently isolated from O. caspius mosquitoes collected in Finland. Taking into account the genetic relatedness with this virus, OCFVPT is not expected to be overtly cytopathic to C6/36 cells. The cytopathic effects associated with its presence in culture supernatants are postulated to be the result of the replication of a co-isolated putative new Negev-like virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Cook, E.C. Holmes, Arch. Virol. 151, 309–325 (2006)

    Article  PubMed  CAS  Google Scholar 

  2. E.A. Gould, X. de Lamballerie, P.M. Zanotto, E.C. Holmes, Adv. Virus Res. 59, 277–314 (2003)

    Article  PubMed  CAS  Google Scholar 

  3. G. Moureau, L. Ninove, A. Izri, A.S. Cook, X. de Lamballerie, R.N. Charrel, Vector Borne Zoonotic Dis. 10, 195–197 (2010)

    Article  PubMed  Google Scholar 

  4. M.P. Sánchez-Seco, A. Vázquez, X. Collao, L. Hernández, C. Aranda, S. Ruiz, R. Escosa, E. Marqués, M.A. Bustillo, F. Molero, A. Tenorio, Vector Borne Zoonotic Dis. 10, 203–206 (2010)

    Article  PubMed  Google Scholar 

  5. H. Cammisa-Parks, L.A. Cisar, A. Kane, V. Stollar, Virology 189, 511–524 (1992)

    Article  PubMed  CAS  Google Scholar 

  6. M.B. Crabtree, P.T. Nga, B.R. Miller, Arch. Virol. 154, 857–860 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. K. Hoshino, H. Isawa, Y. Tsuda, K. Yano, T. Sasaki, M. Yuda, T. Takasaki, M. Kobayashi, K. Sawabe, Virology 359, 405–414 (2007)

    Article  PubMed  CAS  Google Scholar 

  8. K. Hoshino, H. Isawa, Y. Tsuda, K. Sawabe, M. Kobayashi, Virology 391, 119–129 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. E. Huhtamo, G. Moureau, S. Cook, O. Julkunen, N. Putkuri, S. Kurkela, N.Y. Uzcátegui, R.E. Harbach, E.A. Gould, O. Vapalahti, X. de Lamballerie, Virology 433, 471–478 (2012)

    Article  PubMed  CAS  Google Scholar 

  10. G. Kuno, J. Med. Entomol. 44, 93–101 (2007)

    Article  PubMed  CAS  Google Scholar 

  11. R. Parreira, S. Cook, A. Lopes, A.P. de Matos, A.P. de Almeida, J. Piedade, A. Esteves, Virus Res. 167, 152–161 (2012)

    Article  PubMed  CAS  Google Scholar 

  12. B.J. Blitvich, M. Lin, K.S. Dorman, V. Soto, E. Hovav, B.J. Tucker, M. Staley, K.B. Platt, L.C. Bartholomay, J. Med. Entomol. 46, 934–941 (2009)

    Article  PubMed  CAS  Google Scholar 

  13. S. Cook, G. Moureau, R.E. Harbach, L. Mukwaya, K. Goodger, F. Ssenfuka, E. Gould, E.C. Holmes, X. de Lamballerie, J. Gen. Virol. 90, 2669–2678 (2009)

    Article  PubMed  CAS  Google Scholar 

  14. S. Crochu, S. Cook, H. Attoui, R.N. Charrel, R. De Chesse, M. Belhouchet, J.J. Lemasson, P. de Micco, X. de Lamballerie, J. Gen. Virol. 85, 1971–1980 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. D. Roiz, A. Vázquez, M.P. Seco, A. Tenorio, A. Rizzoli, Virol. J. 6, 93 (2009)

    Article  PubMed  Google Scholar 

  16. A. Vázquez, M.P. Sánchez-Seco, G. Palácios, F. Molero, N. Reyes, S. Ruiz, C. Aranda, E. Marqués, R. Escosa, J. Moreno, J. Figuerola, A. Tenorio, Vector Borne Zoonotic Dis. 12, 223–229 (2012)

    Article  PubMed  Google Scholar 

  17. V. Stollar, V.L. Thomas, Virology 64, 367–377 (1975)

    Article  PubMed  CAS  Google Scholar 

  18. S. Cook, S.N. Bennett, E.C. Holmes, R. De Chesse, G. Moureau, X. de Lamballerie, J. Gen. Virol. 87, 735–748 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. M.B. Crabtree, R.C. Sang, V. Stollar, L.M. Dunster, B.R. Miller, Arch. Virol. 148, 1095–1118 (2003)

    Article  PubMed  CAS  Google Scholar 

  20. J.A. Farfan-Ale, M.A. Loroño-Pino, J.E. Garcia-Rejon, E. Hovav, A.M. Powers, M. Lin, K.S. Dorman, K.B. Platt, L.C. Bartholomay, V. Soto, B.J. Beaty, R.S. Lanciotti, B.J. Blitvich, Am. J. Trop. Med. Hyg. 80, 85–95 (2009)

    PubMed  CAS  Google Scholar 

  21. D.Y. Kim, H. Guzman, R. Bueno Jr., J.A. Dennett, A.J. Auguste, C.V. Carrington, V.L. Popov, S.C. Weaver, D.W. Beasley, R.B. Tesh, Virology 386, 154–159 (2009)

    Article  PubMed  CAS  Google Scholar 

  22. M.E. Morales-Betoulle, M.L. Monzón Pineda, S.M. Sosa, N. Panella, M.R. López, C. Cordón-Rosales, N. Komar, A. Powers, B.W. Johnson, J. Med. Entomol. 45, 1187–1190 (2008)

    Article  PubMed  CAS  Google Scholar 

  23. R.C. Sang, A. Gichogo, J. Gachoya, M.D. Dunster, V. Ofula, A.R. Hunt, M.B. Crabtree, B.R. Miller, L.M. Dunster, Arch. Virol. 148, 1085–1093 (2003)

    Article  PubMed  CAS  Google Scholar 

  24. S. Tyler, B.G. Bolling, C.D. Blair, A.C. Brault, K. Pabbaraju, M.V. Armijos, D.C. Clark, C.H. Calisher, M.A. Drebot, Am. J. Trop. Med. Hyg. 85, 162–168 (2011)

    Article  PubMed  Google Scholar 

  25. M. Calzolari, L. Zé-Zé, D. Růžek, A. Vázquez, C. Jeffries, F. Defilippo, H.C. Osório, P. Kilian, S. Ruíz, A.R. Fooks, G. Maioli, F. Amaro, M. Tlusty, J. Figuerola, J.M. Medlock, P. Bonilauri, M.J. Alves, O. Šebesta, A. Tenorio, A.G. Vaux, R. Bellini, I. Gelbič, M.P. Sánchez-Seco, N. Johnson, M. Dottori, J. Gen. Virol. 93, 1215–1225 (2012)

    Article  PubMed  CAS  Google Scholar 

  26. S. Costa, F.B. Freitas, M.T. Novo, C.A. Sousa, A.P.G. Almeida, R. Parreira. 6th European Mosquito Control Association Workshop 2011, Budapest, Hungary, Book of Abstracts, O-01, 26 (2011)

  27. J.F. Reinert, J. Am. Mosq. Control Assoc. 16, 175–188 (2000)

    PubMed  CAS  Google Scholar 

  28. J.F. Reinert, R.E. Harbach, I.J. Kitching, Zool. J. Linn. Soc. 142, 289–368 (2004)

    Article  Google Scholar 

  29. A.P. Almeida, R.P. Galão, C.A. Sousa, M.T. Novo, R. Parreira, J. Pinto, J. Piedade, A. Esteves, Trans. R. Soc. Trop. Med. Hyg. 102, 823–832 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. A.P. Almeida, F.B. Freitas, M.T. Novo, C.A. Sousa, J.C. Rodrigues, R. Alves, A. Esteves, Vector Borne Zoonotic Dis. 10, 673–680 (2010)

    Article  PubMed  Google Scholar 

  31. N. Vasilakis, N.L. Forrester, G. Palacios, F. Nasar, N. Savji, S.L. Rossi, H. Guzman, T.G. Wood, V. Popov, R. Gorchakov, A.V. González, A.D. Haddow, D.M. Watts, A.P. da Rosa, S.C. Weaver, W.I. Lipkin, R.B. Tesh, J. Virol. 87, 2475–2488 (2013)

    Article  PubMed  CAS  Google Scholar 

  32. H. Ribeiro, H.C. Ramos, Eur. Mosq. Bull. 3, 1–11 (1999)

    Google Scholar 

  33. C. Ramsdale, K. Snow, Eur. Mosq. Bull. 5, 25–35 (1999)

    Google Scholar 

  34. C. Huang, B. Slater, W. Campbell, J. Howard, D. White, J. Virol. Methods 94, 121–128 (2001)

    Article  PubMed  CAS  Google Scholar 

  35. Y.G. Zhai, X.J. Lv, X.H. Sun, S.H. Fu, Z.D. Gong, Y. Fen, S.X. Tong, Z.X. Wang, Q. Tang, H. Attoui, G.D. Liang, J. Gen. Virol. 89, 195–199 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. D. Tillett, B.P. Burns, B.A. Neilan. Biotechniques 28, 448, 450, 452–453, 456 (2000)

  37. Z. Li, M. Yu, H. Zhang, H.Y. Wang, L.F. Wang, J. Virol. Methods 130, 154–156 (2005)

    Article  PubMed  CAS  Google Scholar 

  38. O. Folmer, M. Black, W. Hoeh, R. Lutz, R. Vrijenhoek, Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994)

    PubMed  CAS  Google Scholar 

  39. T.A. Hall, Nucleic Acids Symp. Ser. 41, 95–98 (1999)

    CAS  Google Scholar 

  40. K. Katoh, H. Toh, Brief. Bioinformatics 9, 286–298 (2008)

    Article  PubMed  CAS  Google Scholar 

  41. D. Posada, Mol. Biol. Evol. 25, 1253–1256 (2008)

    Article  PubMed  CAS  Google Scholar 

  42. F. Ronquist, J.P. Huelsenbeck, Bioinformatics 19, 1572–1574 (2003)

    Article  PubMed  CAS  Google Scholar 

  43. R.C. Edgar, Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  PubMed  CAS  Google Scholar 

  44. G. Talavera, J. Castresana, Syst. Biol. 56, 564–577 (2007)

    Article  PubMed  CAS  Google Scholar 

  45. S. Guindon, O. Gascuel, Syst. Biol. 52, 696–704 (2003)

    Article  PubMed  Google Scholar 

  46. D. Christophe, C. Christophe-Hobertus, B. Pichon, Cell Signal. 12, 337–341 (2000)

    Article  PubMed  CAS  Google Scholar 

  47. F.X. Jousset, E. Baquerizo, M. Bergoin, Virus Res. 67, 11–16 (2000)

    Article  PubMed  CAS  Google Scholar 

  48. M. van Munster, A.M. Dullemans, M. Verbeek, J.F. van den Heuvel, C. Reinbold, V. Brault, A. Clérivet, F. van der Wilk, J. Invertebr. Pathol. 84, 6–14 (2003)

    Article  PubMed  Google Scholar 

  49. S. Welsch, S. Miller, I. Romero-Brey, A. Merz, C.K. Bleck, P. Walther, S.D. Fuller, C. Antony, J. Krijnse-Locker, R. Bartenschlager, Cell Host Microbe 5, 365–375 (2009)

    Article  PubMed  CAS  Google Scholar 

  50. S. Cook, G. Moureau, A. Kitchen, E. Gould, X. de Lamballerie, E.C. Holmes, R. Harbach, J. Gen. Virol. 93, 223–234 (2012)

    Article  PubMed  CAS  Google Scholar 

  51. A.E. Firth, B.J. Blitvich, N.M. Wills, C.L. Miller, J.F. Atkins, Virology 399, 153–166 (2010)

    Article  PubMed  CAS  Google Scholar 

  52. M. Riley, Microbiol. Rev. 57, 862–952 (1993)

    PubMed  CAS  Google Scholar 

  53. G. Grard, J.J. Lemasson, M. Sylla, A. Dubot, S. Cook, J.F. Molez, X. Pourrut, R. Charrel, J.P. Gonzalez, U. Munderloh, E.C. Holmes, X. de Lamballerie, J. Gen. Virol. 87, 3273–3277 (2006)

    Article  PubMed  CAS  Google Scholar 

  54. Y. Wang, M. Dasso, J. Cell Sci. 122, 4249–4252 (2009)

    Article  PubMed  CAS  Google Scholar 

  55. X. Deng, J. Eickholt, J. Cheng, BMC Bioinformatics 10, 436 (2009)

    Article  PubMed  Google Scholar 

  56. T. Hase, P.L. Summers, K.H. Eckels, J.R. Putnak, Subcell. Biochem. 15, 275–305 (1989)

    Article  PubMed  CAS  Google Scholar 

  57. M.L. Ng, S.H. Tan, J.J. Chu, J. Med. Virol. 65, 758–764 (2001)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Fundação para a Ciência e a Tecnologia (Ministério da Educação e Ciência) through UPMM funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Parreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2013_960_MOESM1_ESM.pdf

Supplementary data 1 Molecular analysis of COI (mitochondrial cytochrome c oxidase subunit I) sequences amplified from the pools of mosquitoes from which OCFVPT strains were isolated. The phylogenetic tree (Neighbor-Joining) was constructed using genetic distances corrected with the Kimura 2 parameter formula, based on multiple alignments of nucleotide sequences (all codon positions were used). The scale bar indicates 0.5 % of genetic diversity. The COI sequences from amplicons obtained from the analyzed pools (174, 207 and 350) were unambiguously identified as Ochlerotatus caspius. All the trees showed similar topologies. The example given indicates the analysis of the COI sequence from mosquito pool #174 (indicated as unknown specimen #174). (PDF 63 kb)

11262_2013_960_MOESM2_ESM.pptx

Supplementary data 2 Bayesian phylogenetic analysis of flavivirus E (A), NS3 (B) and NS5 (C) proteins, based on alignments of amino acid sequences. Posterior probability values ≥ 0.90 are indicated at specific branches. The list of sequences used, denoted by viral abbreviated name and accession numbers, can be found in Supplementary Table 3. The size bar indicates 40 % (A) or 20 % (B and C) of genetic distance (PPTX 140 kb)

Supplementary material 3 (DOC 68 kb)

Supplementary material 4 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, D.D., Cook, S., Lopes, Â. et al. Characterization of an insect-specific flavivirus (OCFVPT) co-isolated from Ochlerotatus caspius collected in southern Portugal along with a putative new Negev-like virus. Virus Genes 47, 532–545 (2013). https://doi.org/10.1007/s11262-013-0960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-013-0960-9

Keywords

Navigation