Skip to main content
Erschienen in: Oral Radiology 1/2019

15.03.2018 | Original Article

Evaluation of cone-beam computed tomography diagnostic image quality using cluster signal-to-noise analysis

verfasst von: Warangkana Weerawanich, Mayumi Shimizu, Yohei Takeshita, Kazutoshi Okamura, Shoko Yoshida, Gainer R. Jasa, Kazunori Yoshiura

Erschienen in: Oral Radiology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Objectives

(1) We sought to assess correlation among four representative parameters from a cluster signal-to-noise curve (true-positive rate [TPR] corresponding to background noise, accuracy corresponding to background noise, maximum TPR, and maximum accuracy) and the diagnostic accuracy of the identification of the mandibular canal using data from observers in a previous study, under the same exposure conditions. (2) We sought to clarify the relationship between the hole depths of a phantom and diagnostic accuracy.

Methods

CBCT images of a Teflon plate phantom with holes of decreasing depths from 0.7 to 0.1 mm were analyzed using the FindFoci plugin of ImageJ. Subsequently, we constructed cluster signal-to-noise curves by plotting TPRs against false-positive rates. The four parameters were assessed by comparing with the diagnostic accuracy calculated from the observers. To analyze image contrast ranges related to detection of mandibular canals, we determined five ranges of hole depths, to represent different contrast ranges—0.1–0.7, 0.1–0.5, 0.2–0.6, 0.2–0.7 and 0.3–0.7 mm—and compared them with observers’ diagnostic accuracy.

Results

Among the four representative parameters, accuracy corresponding to background noise had the highest correlation with the observers’ diagnostic accuracy. Hole depths of 0.3–0.7 and 0.1–0.7 mm had the highest correlation with observers’ diagnostic accuracy in mandibles with distinct and indistinct mandibular canals, respectively.

Conclusions

The accuracy corresponding to background noise obtained from the cluster signal-to-noise curve can be used to evaluate the effects of exposure conditions on diagnostic accuracy.
Literatur
1.
Zurück zum Zitat Yoshiura K. Image quality assessment of digital intraoral radiography—perception to caries diagnosis. Jpn Dent Sci Rev. 2012;48:42–7.CrossRef Yoshiura K. Image quality assessment of digital intraoral radiography—perception to caries diagnosis. Jpn Dent Sci Rev. 2012;48:42–7.CrossRef
2.
Zurück zum Zitat Yoshiura K, Kanda S, Welander U. Theoretical consideration of radiological caries diagnosis: correlation between physical properties and diagnostic accuracy. Dent Jpn. 2005;41:101–6. Yoshiura K, Kanda S, Welander U. Theoretical consideration of radiological caries diagnosis: correlation between physical properties and diagnostic accuracy. Dent Jpn. 2005;41:101–6.
3.
Zurück zum Zitat Yoshiura K, Okamura K, Tokumori K, Nakayama E, Chikui T, Goto TK, et al. Correlation between diagnostic accuracy and perceptibility. Dentomaxillofac Radiol. 2005;34:350–2.CrossRefPubMed Yoshiura K, Okamura K, Tokumori K, Nakayama E, Chikui T, Goto TK, et al. Correlation between diagnostic accuracy and perceptibility. Dentomaxillofac Radiol. 2005;34:350–2.CrossRefPubMed
4.
Zurück zum Zitat Mansson LG. Methods for the evaluation of image quality: a review. Radiat Prot Dosimetry. 2000;90:89–99.CrossRef Mansson LG. Methods for the evaluation of image quality: a review. Radiat Prot Dosimetry. 2000;90:89–99.CrossRef
5.
Zurück zum Zitat Weerawanich W, Shimizu M, Takeshita Y, Okamura K, Yoshida S, Yoshiura K. Cluster signal-to-noise analysis for evaluation of the information content in an image. Dentomaxillofac Radiol. 2018;47:20170147.CrossRefPubMed Weerawanich W, Shimizu M, Takeshita Y, Okamura K, Yoshida S, Yoshiura K. Cluster signal-to-noise analysis for evaluation of the information content in an image. Dentomaxillofac Radiol. 2018;47:20170147.CrossRefPubMed
6.
Zurück zum Zitat Kumar R, Indrayan A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr. 2011;48:277–87.CrossRefPubMed Kumar R, Indrayan A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr. 2011;48:277–87.CrossRefPubMed
7.
Zurück zum Zitat Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115:654–7.CrossRefPubMed Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115:654–7.CrossRefPubMed
8.
Zurück zum Zitat Jasa GR, Shimizu M, Okamura K, Tokumori K, Takeshita Y, Weerawanich W, et al. Effects of exposure parameters and slice thickness on detecting clear and unclear mandibular canals using cone beam CT. Dentomaxillofac Radiol. 2017;46:20160315.CrossRefPubMedPubMedCentral Jasa GR, Shimizu M, Okamura K, Tokumori K, Takeshita Y, Weerawanich W, et al. Effects of exposure parameters and slice thickness on detecting clear and unclear mandibular canals using cone beam CT. Dentomaxillofac Radiol. 2017;46:20160315.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Takeshita Y, Shimizu M, Okamura K, Yoshida S, Weerawanich W, Tokumori K, et al. A new method to evaluate image quality of CBCT images quantitatively without observers. Dentomaxillofac Radiol. 2017;46:20160331.CrossRefPubMedPubMedCentral Takeshita Y, Shimizu M, Okamura K, Yoshida S, Weerawanich W, Tokumori K, et al. A new method to evaluate image quality of CBCT images quantitatively without observers. Dentomaxillofac Radiol. 2017;46:20160331.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Flach PA. The Geometry of ROC Space: understanding machine learning metrics through ROC isometrics. In: Fawcett T, Mishra N, editors. Proceedings of the 20th International Conference on Machine Learning (ICML-2003); 2003 August 21–24; Washington DC, USA. California: The AAAI Press; 2003. p. 194–201. Flach PA. The Geometry of ROC Space: understanding machine learning metrics through ROC isometrics. In: Fawcett T, Mishra N, editors. Proceedings of the 20th International Conference on Machine Learning (ICML-2003); 2003 August 21–24; Washington DC, USA. California: The AAAI Press; 2003. p. 194–201.
12.
Zurück zum Zitat Pauwels R, Silkosessak O, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol. 2014;43:20140059.CrossRefPubMedPubMedCentral Pauwels R, Silkosessak O, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol. 2014;43:20140059.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Pauwels R, Beinsberger J, Stamatakis H, Tsiklakis K, Walker A, Bosmans H, et al. Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:127–35.CrossRefPubMed Pauwels R, Beinsberger J, Stamatakis H, Tsiklakis K, Walker A, Bosmans H, et al. Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:127–35.CrossRefPubMed
Metadaten
Titel
Evaluation of cone-beam computed tomography diagnostic image quality using cluster signal-to-noise analysis
verfasst von
Warangkana Weerawanich
Mayumi Shimizu
Yohei Takeshita
Kazutoshi Okamura
Shoko Yoshida
Gainer R. Jasa
Kazunori Yoshiura
Publikationsdatum
15.03.2018
Verlag
Springer Singapore
Erschienen in
Oral Radiology / Ausgabe 1/2019
Print ISSN: 0911-6028
Elektronische ISSN: 1613-9674
DOI
https://doi.org/10.1007/s11282-018-0325-0

Weitere Artikel der Ausgabe 1/2019

Oral Radiology 1/2019 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.