Skip to main content

Advertisement

Log in

Adenosine A1 receptor regulates osteoclast formation by altering TRAF6/TAK1 signaling

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Adenosine is an endogenous nucleoside that modulates many physiological processes through four receptor subtypes (A1, A2a, A2b, A3). Previous work from our laboratory has uncovered a critical role for adenosine A1 receptor (A1 R) in osteoclastogenesis both in vivo and in vitro. Our current work focuses on understanding the details of how A1 R modulates the receptor activator of NF-κB ligand (RANKL)-induced signaling in osteoclastogenesis. Osteoclasts were generated from mouse bone marrow precursors in the presence of RANKL and macrophage-colony stimulating factor. A pharmacological antagonist of A1 R (DPCPX) inhibited RANKL-induced osteoclast differentiation, including osteoclast-specific genes (Acp5, MMP9, β 3 Integrin, α v Integrin, and CTSK) and osteoclast-specific transcription factors such as c-fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) expression in a dose-dependent manner. DPCPX also inhibited RANKL-induced activation of NF-κB and JNK/c-Jun but had little effect on other mitogen-activated protein kinases (p38 and Erk). Finally, immunoprecipitation analysis showed that blockade of A1R resulted in disruption of the association of tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β-activated kinase 1 (TAK1), a signaling event that is important for activation of NF-κB and JNK, suggesting the participation of adenosine/A1R in early signaling of RANKL. Collectively, these data demonstrated an important role of adenosine, through A1R in RANKL-induced osteoclastogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gruber HE et al (1986) Osteoblast and osteoclast cell number and cell activity in postmenopausal osteoporosis. Miner Electrolyte Metab 12(4):246–254

    PubMed  CAS  Google Scholar 

  2. Lozo P et al (2004) Bone histology in postmenopausal osteoporosis—variations in cellular activity. Acta Med Croatica 58(1):5–11

    PubMed  Google Scholar 

  3. Reddy SV (2004) Etiology of Paget's disease and osteoclast abnormalities. J Cell Biochem 93(4):688–696

    Article  PubMed  CAS  Google Scholar 

  4. Neale SD et al (2000) Osteoclast differentiation from circulating mononuclear precursors in Paget’s disease is hypersensitive to 1,25-dihydroxyvitamin D(3) and RANKL. Bone 27(3):409–416

    Article  PubMed  CAS  Google Scholar 

  5. Roato I et al (2005) Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement. FASEB J 19(2):228–230

    PubMed  CAS  Google Scholar 

  6. Roato I et al (2008) Osteoclasts are active in bone forming metastases of prostate cancer patients. PLoS One 3(11):e3627

    Article  PubMed  Google Scholar 

  7. Tjoa ST et al (2008) Formation of osteoclast-like cells from peripheral blood of periodontitis patients occurs without supplementation of macrophage colony-stimulating factor. J Clin Periodontol 35(7):568–575

    Article  PubMed  CAS  Google Scholar 

  8. Sakellari D, Menti S, Konstantinidis A (2008) Free soluble receptor activator of nuclear factor-kappab ligand in gingival crevicular fluid correlates with distinct pathogens in periodontitis patients. J Clin Periodontol 35(11):938–943

    Article  PubMed  Google Scholar 

  9. Hirayama T et al (2002) Osteoclast formation and activity in the pathogenesis of osteoporosis in rheumatoid arthritis. Rheumatology (Oxford) 41(11):1232–1239

    Article  CAS  Google Scholar 

  10. Gravallese EM (2002) Bone destruction in arthritis. Ann Rheum Dis 61(Suppl 2):ii84–ii86

    PubMed  Google Scholar 

  11. Faccio R et al (2003) Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by beta3 integrin. J Cell Biol 162(3):499–509

    Article  PubMed  CAS  Google Scholar 

  12. Faccio R et al (2003) c-Fms and the alphavbeta3 integrin collaborate during osteoclast differentiation. J Clin Invest 111(5):749–758

    PubMed  CAS  Google Scholar 

  13. McHugh KP et al (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105(4):433–440

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura I, Gailit J, Sasaki T (1996) Osteoclast integrin alphaVbeta3 is present in the clear zone and contributes to cellular polarization. Cell Tissue Res 286(3):507–515

    Article  PubMed  CAS  Google Scholar 

  15. Grigoriadis AE et al (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266(5184):443–448

    Article  PubMed  CAS  Google Scholar 

  16. David JP et al (2001) Carbonic anhydrase II is an AP-1 target gene in osteoclasts. J Cell Physiol 188(1):89–97

    Article  PubMed  CAS  Google Scholar 

  17. Matsuo K et al (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279(25):26475–26480

    Article  PubMed  CAS  Google Scholar 

  18. Cao X et al (1993) Cloning of the promoter for the avian integrin beta 3 subunit gene and its regulation by 1,25-dihydroxyvitamin D3. J Biol Chem 268(36):27371–27380

    PubMed  CAS  Google Scholar 

  19. Reddy SV et al (1995) Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter. J Bone Miner Res 10(4):601–606

    Article  PubMed  CAS  Google Scholar 

  20. Takayanagi H et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901

    Article  PubMed  CAS  Google Scholar 

  21. Ikeda F et al (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 114(4):475–484

    PubMed  CAS  Google Scholar 

  22. David JP et al (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 115(Pt 22):4317–4325

    Article  PubMed  CAS  Google Scholar 

  23. Mizukami J et al (2002) Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol 22(4):992–1000

    Article  PubMed  CAS  Google Scholar 

  24. Lee SW et al (2002) TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB. J Biochem Mol Biol 35(4):371–376

    Article  PubMed  Google Scholar 

  25. Huang H et al (2006) Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-kappaB transactivation by RANKL. Cell Death Differ 13(11):1879–1891

    Article  PubMed  CAS  Google Scholar 

  26. Besse A et al (2007) TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem 282(6):3918–3928

    Article  PubMed  CAS  Google Scholar 

  27. Sorrentino A et al (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10(10):1199–1207

    Article  PubMed  CAS  Google Scholar 

  28. Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26(22):3214–3226

    Article  PubMed  CAS  Google Scholar 

  29. Kara FM et al (2010) Adenosine A(1) receptors regulate bone resorption in mice: adenosine A(1) receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A(1) receptor-knockout mice. Arthritis Rheum 62(2):534–541

    Article  PubMed  CAS  Google Scholar 

  30. Kara FM et al (2010) Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J 24(7):2325–2333

    Article  PubMed  CAS  Google Scholar 

  31. Lomaga MA et al (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13(8):1015–1024

    Article  PubMed  CAS  Google Scholar 

  32. Kim N et al (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202(5):589–595

    Article  PubMed  CAS  Google Scholar 

  33. Naito A et al (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4(6):353–362

    Article  PubMed  CAS  Google Scholar 

  34. Mediero A et al (2011) Adenosine A(2A) receptor ligation inhibits osteoclast formation. Am J Pathol 180:775–786

    Article  PubMed  Google Scholar 

  35. Yamashita T et al (2007) NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282(25):18245–18253

    Article  PubMed  CAS  Google Scholar 

  36. Iotsova V et al (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3(11):1285–1289

    Article  PubMed  CAS  Google Scholar 

  37. Franzoso G et al (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11(24):3482–3496

    Article  PubMed  CAS  Google Scholar 

  38. Brust TB, Cayabyab FS, MacVicar BA (2007) C-Jun N-terminal kinase regulates adenosine A1 receptor-mediated synaptic depression in the rat hippocampus. Neuropharmacology 53(8):906–917

    Article  PubMed  CAS  Google Scholar 

  39. Liu AM, Wong YH (2004) G16-mediated activation of nuclear factor kappaB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling. J Biol Chem 279(51):53196–53204

    Article  PubMed  CAS  Google Scholar 

  40. Ikeda F et al (2008) JNK/c-Jun signaling mediates an anti-apoptotic effect of RANKL in osteoclasts. J Bone Miner Res 23(6):907–914

    Article  PubMed  CAS  Google Scholar 

  41. Takaesu G et al (2001) Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol Cell Biol 21(7):2475–2484

    Article  PubMed  CAS  Google Scholar 

  42. Morlon A, Munnich A, Smahi A (2005) TAB2, TRAF6 and TAK1 are involved in NF-kappaB activation induced by the TNF-receptor, Edar and its adaptator Edaradd. Hum Mol Genet 14(23):3751–3757

    Article  PubMed  CAS  Google Scholar 

  43. Ninomiya-Tsuji J et al (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724):252–256

    Article  PubMed  CAS  Google Scholar 

  44. Verzijl D, Ijzerman AP (2011) Functional selectivity of adenosine receptor ligands. Purinergic Signal 7(2):171–192

    Article  PubMed  CAS  Google Scholar 

  45. Merrill JT et al (1997) Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arthritis Rheum 40:1308–1315

    PubMed  CAS  Google Scholar 

  46. Merrill JT et al (1997) Inhibition of methotrexate-induced rheumatoid nodulosis by colchicine: evidence from an in vitro model and regression in 7 of 14 patients. J Clin Rheumatol 3(6):328–333

    Article  PubMed  CAS  Google Scholar 

  47. Merrill JT et al (1997) Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes: a mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arthritis Rheum 40(7):1308–1315

    PubMed  CAS  Google Scholar 

  48. Shryock JC, Ozeck MJ, Belardinelli L (1998) Inverse agonists and neutral antagonists of recombinant human A1 adenosine receptors stably expressed in Chinese hamster ovary cells. Mol Pharmacol 53(5):886–893

    PubMed  CAS  Google Scholar 

  49. Teramachi J et al (2011) Adenosine abolishes MTX-induced suppression of osteoclastogenesis and inflammatory bone destruction in adjuvant-induced arthritis. Lab Invest 91(5):719–731

    Article  PubMed  CAS  Google Scholar 

  50. Gharibi B et al (2011) Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int J Obes doi:10.1038/ijo.2011.129

  51. Russell JM et al (2007) Adenosine inhibition of lipopolysaccharide-induced interleukin-6 secretion by the osteoblastic cell line MG-63. Calcif Tissue Int 81(4):316–326

    Article  PubMed  CAS  Google Scholar 

  52. Evans BAJ et al (2006) Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J Bone Miner Res 21(2):228–236

    Article  PubMed  CAS  Google Scholar 

  53. Chan ES, Cronstein BN (2010) Methotrexate—how does it really work? Nat Rev Rheumatol 6(3):175–178

    Article  PubMed  CAS  Google Scholar 

  54. Montesinos C et al (2000) Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine. Evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum 43(3):656–663

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (AR56672, AR56672S1 and AR54897), the NYU-HHC Clinical and Translational Science Institute (UL1RR029893) and the Vilcek Foundation.

Disclosure

Bruce Cronstein, MD. Consultant (within the past 2 years), all <$10,000: Bristol-Myers Squibb, Novartis, CanFite Biopharmaceuticals, Cypress Laboratories, Regeneron (Westat, DSMB), Endocyte, Protalex, Allos, Inc., Savient,. Equity: CanFite Biopharmaceuticals received for membership in Scientific Advisory Board. Grants: King Pharmaceuticals, NIH, Vilcek Foundation, OSI Pharmaceuticals, URL Pharmaceuticals, Inc. Board Member: Vilcek Foundation. Intellectual Property: Patents on use of adenosine A2A receptor agonists to promote wound healing and use of A2A receptor antagonists to inhibit fibrosis. Patent on use of adenosine A1 receptor antagonists to treat osteoporosis and other diseases of bone. Patent on the use of adenosine A1 and A2B Receptor antagonists to treat fatty liver. Patent on the use of adenosine A2A receptor agonists to prevent prosthesis loosening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Cronstein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Suppression of osteoclast formation by A2bR-selective agonist. Murine BMMs (1 × 105 cell/cm2) were cultured with M-CSF and RANKL (30 ng/ml each), with or without various concentrations of BAY 60–6,583 for 5 days in 48-well plates for TRAP staining (a). b Numbers of TRAP-positive multinuclear cells containing more than three nuclei (TRAP + MNC) were counted. c BMMs were cultured with M-CSF and RANKL (30 ng/ml each), with or without various concentrations of BAY 60–6,583 in 6-well plates for 5 days prior to RNA extraction and real-time PCR for Ctsk. β-actin served as PCR control. Relative expression was calculated relative to M-CSF only cells (fold value 1). Values are shown as means ± S.D. of three independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to RANKL + M-CSF cells (JPEG 96 kb)

Figure 2

Suppression of the RANKL-induced expression of Ctsk by A1R-selective antagonist, Rolofylline. BMMs were cultured with M-CSF and RANKL (30 ng/ml each), in the presence or absence of 1 μM KW3902 for 5 days. Total RNA was isolated and Ctsk mRNA levels were quantified by real-time PCR. Relative expression in mRNA levels was calculated relative to M-CSF only cells (fold value 1). Values are shown as means ± S.D. of three independent experiments. ***P < 0.001 compared to RANKL + M-CSF cells (JPEG 11 kb)

Figure 3

A1R-selective agonist N6-cyclopentyladenosine (CPA) neither directly affected Ctsk expression nor reversed the DPCPX-mediated inhibition of Ctsk expression. BMMs were cultured with M-CSF and RANKL (30 ng/ml each), with or without various concentrations of DPCPX in the presence or absence of 1 μM CPA for 5 days. Total RNA was isolated and Ctsk mRNA levels were quantified by real-time PCR. Relative expression in mRNA levels was calculated relative to M-CSF only cells (fold value 1). Values are shown as means ± S.D. of four independent experiments. **P < 0.01, ***P < 0.001 compared to RANKL + M-CSF cells (JPEG 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Cronstein, B.N. Adenosine A1 receptor regulates osteoclast formation by altering TRAF6/TAK1 signaling. Purinergic Signalling 8, 327–337 (2012). https://doi.org/10.1007/s11302-012-9292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9292-9

Keywords

Navigation